九、排序算法大总结(冒泡排序、选择排序、插入排序、希尔排序、快速排序、归并排序、基数排序)

一、排序算法介绍以及时间复杂度计算

1.排序的分类

      排序也称排序算法(Sort Algorithm),排序是将一组数据,依指定的顺序进行排列的过程。排序的分类:

  1. 内部排序(考察的比较多):
    指将需要处理的所有数据都加载到内部存储器中进行排序。
  2. 外部排序法:
    数据量过大,无法全部加载到内存中,需要借助外部存储进行排序。

在这里插入图片描述

2.算法的时间复杂度计算

2.1 时间频度

      时间频度:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度

2.2 时间复杂度(忽略常数项、低次项和系数)

在这里插入图片描述
在这里插入图片描述

2.2.1 时间复杂度O(1)

      无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1)

int i = 1;
int j = 2;
++i;
j++;
int m = i + J;

      上述代码在执行的时候,它消耗的时候并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度。

2.2.2 时间复杂度 O(logn)(底数可以改变的)

int i = 1;
while(i < n){
   i = i * 2;
}

      说明:在while循环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。假设循环x次之后,i 就大于 2 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = log2n也就是说当循环 log2n 次以后,这个代码就结束了。因此这个代码的时间复杂度为:O(log2n) 。 O(log2n) 的这个2 时间上是根据代码变化的,i = i * 3 ,则是 O(log3n)

2.2.3 时间复杂度 O(n)

forint i = 1; i <= n ; ++i){
     i++;
}

      说明:这段代码,for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度

2.2.4 时间复杂度 O(nlogn)

for(int m =1; m < n; m++){
   i = 1;
   while(i < n)
   {
        i = i * 2;
   }
}

      说明:线性对数阶O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)

2.2.5 时间复杂度 O(n^k)

int m = 1;
for (int i = 1; i <= n; i++){
     for(int j =1; j <= n;  j++){
        m++;
     }
 }

      说明:平方阶O(n²) 就更容易理解了,如果把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²),这段代码其实就是嵌套了2层n循环,它的时间复杂度就是 O(nn),即 O(n²)。 如果将其中一层循环的n改成m,那它的时间复杂度就变成了 O(mn)

2.2.6 平均时间复杂度和最坏时间复杂度

      1.平均时间复杂度:指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。
      2.最坏时间复杂度:最坏情况下的时间复杂度称最坏时间复杂度。一般讨论的时间复杂度均是最坏情况下的时间复杂度。 这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。
在这里插入图片描述

二、冒泡排序

1.冒泡排序原理

在这里插入图片描述

在这里插入图片描述

2.代码实现

package sort;

import java.text.SimpleDateFormat;
import java.util.Date;

public class BubbleSort {

	public static void main(String[] args) {
//		int arr[] = {3, 9, -1, 10, 20};
//		
//		System.out.println("排序前");
//		System.out.println(Arrays.toString(arr));
		
		//为了容量理解,我们把冒泡排序的演变过程,给大家展示
		
		//测试一下冒泡排序的速度O(n^2), 给80000个数据,测试
		//创建要给80000个的随机的数组
		int[] arr = new int[80000];
		for(int i =0; i < 80000;i++) {
			arr[i] = (int)(Math.random() * 8000000); //生成一个[0, 8000000) 数
		}
		
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		//测试冒泡排序
		bubbleSort(arr);
		
		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序后的时间是=" + date2Str);
		

	}
	
	// 将前面的冒泡排序算法,封装成一个方法
	public static void bubbleSort(int[] arr) {
		// 冒泡排序 的时间复杂度 O(n^2), 自己写出
		int temp = 0; // 临时变量
		boolean flag = false; // 标识变量,表示是否进行过交换
		for (int i = 0; i < arr.length - 1; i++) {

			for (int j = 0; j < arr.length - 1 - i; j++) {
				// 如果前面的数比后面的数大,则交换
				if (arr[j] > arr[j + 1]) {
					flag = true;
					temp = arr[j];
					arr[j] = arr[j + 1];
					arr[j + 1] = temp;
				}
			}

			if (!flag) { // 在一趟排序中,一次交换都没有发生过
				break;
			} else {
				flag = false; // 重置flag!!!, 进行下次判断
			}
		}
	}

}

3.测试结果

排序前的时间是=2020-09-27 09:52:04
排序后的时间是=2020-09-27 09:52:16

三、选择排序

1.选择排序原理

      选择排序(select sorting)也是一种简单的排序方法。它的基本思想是:第一次从arr[0]arr[n-1]中选取最小值,与arr[0]交换,第二次从arr[1]arr[n-1]中选取最小值,与arr[1]交换,第三次从arr[2]arr[n-1]中选取最小值,与arr[2]交换,…,第i次从arr[i-1]arr[n-1]中选取最小值,与arr[i-1]交换,…, 第n-1次从arr[n-2]~arr[n-1]中选取最小值,与arr[n-2]交换,总共通过n-1次,得到一个按排序码从小到大排列的有序序列。

2.代码实现

package sort;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
//选择排序
public class SelectSort {

	public static void main(String[] args) {
		//int [] arr = {101, 34, 119, 1, -1, 90, 123};
		
		//创建要给80000个的随机的数组
		int[] arr = new int[80000];
		for (int i = 0; i < 80000; i++) {
			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
		}
		
		
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		selectSort(arr);
		
		
		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序前的时间是=" + date2Str);
		
		//System.out.println("排序后");
		//System.out.println(Arrays.toString(arr));
		
		
	}
	
	//选择排序
	public static void selectSort(int[] arr) {
		//在推导的过程,我们发现了规律,因此,可以使用for来解决
		//选择排序时间复杂度是 O(n^2)
		for (int i = 0; i < arr.length - 1; i++) {
			int minIndex = i;
			int min = arr[i];
			for (int j = i + 1; j < arr.length; j++) {
				if (min > arr[j]) { // 说明假定的最小值,并不是最小
					min = arr[j]; // 重置min
					minIndex = j; // 重置minIndex
				}
			}

			// 将最小值,放在arr[0], 即交换
			if (minIndex != i) {
				arr[minIndex] = arr[i];
				arr[i] = min;
			}
		}
	}

}

3.测试结果

排序前的时间是=2020-09-27 10:38:24
排序前的时间是=2020-09-27 10:38:26

四、插入排序

1.插入排序原理

插入排序(Insertion Sorting)的基本思想是:把n个待排序的元素看成为一个有序表和一个无序表,开始时有序表中只包含一个元素,无序表中包含有n-1个元素,排序过程中每次从无序表中取出第一个元素,把它的排序码依次与有序表元素的排序码进行比较,将它插入到有序表中的适当位置,使之成为新的有序表。

2.代码实现

package sort;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

public class InsertSort {

	public static void main(String[] args) {
		//int[] arr = {101, 34, 119, 1, -1, 89}; 
		// 创建要给80000个的随机的数组
		int[] arr = new int[80000];
		for (int i = 0; i < 80000; i++) {
			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
		}

		System.out.println("插入排序前");
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		insertSort(arr); //调用插入排序算法
		
		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序前的时间是=" + date2Str);
	}
	
	//插入排序
	public static void insertSort(int[] arr) {
		int insertVal = 0;
		int insertIndex = 0;
		//使用for循环来把代码简化
		for(int i = 1; i < arr.length; i++) {
			//定义待插入的数
			insertVal = arr[i];
			insertIndex = i - 1; // 即arr[1]的前面这个数的下标
	
			// 给insertVal 找到插入的位置
			// 说明
			// 1. insertIndex >= 0 保证在给insertVal 找插入位置,不越界
			// 2. insertVal < arr[insertIndex] 待插入的数,还没有找到插入位置
			// 3. 就需要将 arr[insertIndex] 后移
			while (insertIndex >= 0 && insertVal < arr[insertIndex]) {
				arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]
				insertIndex--;
			}
			// 当退出while循环时,说明插入的位置找到, insertIndex + 1
			// 举例:理解不了,我们一会 debug
			//这里我们判断是否需要赋值
			if(insertIndex + 1 != i) {
				arr[insertIndex + 1] = insertVal;
			}
		}
	}

}

3.测试结果

排序前的时间是=2020-09-27 10:52:05
排序前的时间是=2020-09-27 10:52:06

五、希尔排序

1.希尔排序原理

在这里插入图片描述
在这里插入图片描述

2.代码实现

package sort;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

public class ShellSort {

	public static void main(String[] args) {
		//int[] arr = { 8, 9, 1, 7, 2, 3, 5, 4, 6, 0 };
		
		// 创建要给80000个的随机的数组
		int[] arr = new int[8000000];
		for (int i = 0; i < 8000000; i++) {
			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
		}
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		//shellSort(arr); //交换式
		shellSort2(arr);//移位方式
		
		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序后的时间是=" + date2Str);
	}

	// 使用逐步推导的方式来编写希尔排序
	// 希尔排序时, 对有序序列在插入时采用交换法, 
	// 思路(算法) ===> 代码
	public static void shellSort(int[] arr) {
		
		int temp = 0;
		int count = 0;
		// 根据前面的逐步分析,使用循环处理
		for (int gap = arr.length / 2; gap > 0; gap /= 2) {
			for (int i = gap; i < arr.length; i++) {
				// 遍历各组中所有的元素(共gap组,每组有个元素), 步长gap
				for (int j = i - gap; j >= 0; j -= gap) {
					// 如果当前元素大于加上步长后的那个元素,说明交换
					if (arr[j] > arr[j + gap]) {
						temp = arr[j];
						arr[j] = arr[j + gap];
						arr[j + gap] = temp;
					}
				}
			}
		}
	}
	
	//对交换式的希尔排序进行优化->移位法
	public static void shellSort2(int[] arr) {
		
		// 增量gap, 并逐步的缩小增量
		for (int gap = arr.length / 2; gap > 0; gap /= 2) {
			// 从第gap个元素,逐个对其所在的组进行直接插入排序
			for (int i = gap; i < arr.length; i++) {
				int j = i;
				int temp = arr[j];
				if (arr[j] < arr[j - gap]) {
					while (j - gap >= 0 && temp < arr[j - gap]) {
						//移动
						arr[j] = arr[j-gap];
						j -= gap;
					}
					//当退出while后,就给temp找到插入的位置
					arr[j] = temp;
				}
			}
		}
	}
}

3.测试结果

排序前的时间是=2020-09-27 15:17:38
排序后的时间是=2020-09-27 15:17:41

六、快速排序

1.快速排序原理

在这里插入图片描述
在这里插入图片描述

2.代码实现

package sort;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

public class QuickSort {

	public static void main(String[] args) {
		//int[] arr = {-9,78,0,23,-567,70, -1,900, 4561};
		
		//测试快排的执行速度
		// 创建要给80000个的随机的数组
		int[] arr = new int[8000000];
		for (int i = 0; i < 8000000; i++) {
			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
		}
		

		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		quickSort(arr, 0, arr.length-1);
		
		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序后的时间是=" + date2Str);
	}

	public static void quickSort(int[] arr,int left, int right) {
		int l = left; //左下标
		int r = right; //右下标
		//pivot 中轴值
		int pivot = arr[(left + right) / 2];
		int temp = 0; //临时变量,作为交换时使用
		//while循环的目的是让比pivot 值小放到左边,比pivot 值大放到右边
		while( l < r) { 
			//在pivot的左边一直找,找到大于等于pivot值,才退出
			while( arr[l] < pivot) {
				l += 1;
			}
			//在pivot的右边一直找,找到小于等于pivot值,才退出
			while(arr[r] > pivot) {
				r -= 1;
			}
			//如果l >= r说明pivot 的左右两的值,已经按照左边全部是
			//小于等于pivot值,右边全部是大于等于pivot值
			if( l >= r) {
				break;
			}
			
			//交换
			temp = arr[l];
			arr[l] = arr[r];
			arr[r] = temp;
			
			//如果交换完后,发现这个arr[l] == pivot值 相等 r--, 前移
			if(arr[l] == pivot) {
				r -= 1;
			}
			//如果交换完后,发现这个arr[r] == pivot值 相等 l++, 后移
			if(arr[r] == pivot) {
				l += 1;
			}
		}
		
		// 如果 l == r, 必须l++, r--, 否则为出现栈溢出
		if (l == r) {
			l += 1;
			r -= 1;
		}
		//向左递归
		if(left < r) {
			quickSort(arr, left, r);
		}
		//向右递归
		if(right > l) {
			quickSort(arr, l, right);
		}
		
		
	}
}

3.测试结果

排序前的时间是=2020-09-27 15:17:38
排序后的时间是=2020-09-27 15:17:41

七、归并排序

1.归并排序原理

在这里插入图片描述
在这里插入图片描述

2.代码实现

package sort;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

public class MergetSort {

	public static void main(String[] args) {
		//测试快排的执行速度
		// 创建要给80000个的随机的数组
		int[] arr = new int[8000000];
		for (int i = 0; i < 8000000; i++) {
			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
		}
		System.out.println("排序前");
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		int temp[] = new int[arr.length]; //归并排序需要一个额外空间
 		mergeSort(arr, 0, arr.length - 1, temp);
 		
 		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序前的时间是=" + date2Str);
	}
	
	
	//分+合方法
	public static void mergeSort(int[] arr, int left, int right, int[] temp) {
		if(left < right) {
			int mid = (left + right) / 2; //中间索引
			//向左递归进行分解
			mergeSort(arr, left, mid, temp);
			//向右递归进行分解
			mergeSort(arr, mid + 1, right, temp);
			//合并
			merge(arr, left, mid, right, temp);
			
		}
	}
	
	//合并的方法
	/**
	 * 
	 * @param arr 排序的原始数组
	 * @param left 左边有序序列的初始索引
	 * @param mid 中间索引
	 * @param right 右边索引
	 * @param temp 做中转的数组
	 */
	public static void merge(int[] arr, int left, int mid, int right, int[] temp) {
		
		int i = left; // 初始化i, 左边有序序列的初始索引
		int j = mid + 1; //初始化j, 右边有序序列的初始索引
		int t = 0; // 指向temp数组的当前索引
		
		//(一)
		//先把左右两边(有序)的数据按照规则填充到temp数组
		//直到左右两边的有序序列,有一边处理完毕为止
		while (i <= mid && j <= right) {//继续
			//如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素
			//即将左边的当前元素,填充到 temp数组 
			//然后 t++, i++
			if(arr[i] <= arr[j]) {
				temp[t] = arr[i];
				t += 1;
				i += 1;
			} else { //反之,将右边有序序列的当前元素,填充到temp数组
				temp[t] = arr[j];
				t += 1;
				j += 1;
			}
		}
		
		//(二)
		//把有剩余数据的一边的数据依次全部填充到temp
		while( i <= mid) { //左边的有序序列还有剩余的元素,就全部填充到temp
			temp[t] = arr[i];
			t += 1;
			i += 1;	
		}
		
		while( j <= right) { //右边的有序序列还有剩余的元素,就全部填充到temp
			temp[t] = arr[j];
			t += 1;
			j += 1;	
		}
		
		
		//(三)
		//将temp数组的元素拷贝到arr
		//注意,并不是每次都拷贝所有
		t = 0;
		int tempLeft = left; // 
		//第一次合并 tempLeft = 0 , right = 1 //  tempLeft = 2  right = 3 // tL=0 ri=3
		//最后一次 tempLeft = 0  right = 7
		while(tempLeft <= right) { 
			arr[tempLeft] = temp[t];
			t += 1;
			tempLeft += 1;
		}
		
	}

}

3.测试结果

排序前的时间是=2020-09-27 15:17:38
排序后的时间是=2020-09-27 15:17:41

八、基数排序

1.基数排序原理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.代码实现

package sort;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

public class RadixSort {

	public static void main(String[] args) {
		int arr[] = { 53, 3, 542, 748, 14, 214};
		
		// 80000000 * 11 * 4 / 1024 / 1024 / 1024 =3.3G 
//		int[] arr = new int[8000000];
//		for (int i = 0; i < 8000000; i++) {
//			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
//		}
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		radixSort(arr);
		
		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序前的时间是=" + date2Str);
		
		System.out.println("基数排序后 " + Arrays.toString(arr));
		
	}

	//基数排序方法
	public static void radixSort(int[] arr) {
		
		//根据前面的推导过程,我们可以得到最终的基数排序代码
		
		//1. 得到数组中最大的数的位数
		int max = arr[0]; //假设第一数就是最大数
		for(int i = 1; i < arr.length; i++) {
			if (arr[i] > max) {
				max = arr[i];
			}
		}
		//得到最大数是几位数
		int maxLength = (max + "").length();
		
		
		//定义一个二维数组,表示10个桶, 每个桶就是一个一维数组
		//说明
		//1. 二维数组包含10个一维数组
		//2. 为了防止在放入数的时候,数据溢出,则每个一维数组(桶),大小定为arr.length
		//3. 名明确,基数排序是使用空间换时间的经典算法
		int[][] bucket = new int[10][arr.length];
		
		//为了记录每个桶中,实际存放了多少个数据,我们定义一个一维数组来记录各个桶的每次放入的数据个数
		//可以这里理解
		//比如:bucketElementCounts[0] , 记录的就是  bucket[0] 桶的放入数据个数
		int[] bucketElementCounts = new int[10];
		
		
		//这里我们使用循环将代码处理
		
		for(int i = 0 , n = 1; i < maxLength; i++, n *= 10) {
			//(针对每个元素的对应位进行排序处理), 第一次是个位,第二次是十位,第三次是百位..
			for(int j = 0; j < arr.length; j++) {
				//取出每个元素的对应位的值
				int digitOfElement = arr[j] / n % 10;
				//放入到对应的桶中
				bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
				bucketElementCounts[digitOfElement]++;
			}
			//按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
			int index = 0;
			//遍历每一桶,并将桶中是数据,放入到原数组
			for(int k = 0; k < bucketElementCounts.length; k++) {
				//如果桶中,有数据,我们才放入到原数组
				if(bucketElementCounts[k] != 0) {
					//循环该桶即第k个桶(即第k个一维数组), 放入
					for(int l = 0; l < bucketElementCounts[k]; l++) {
						//取出元素放入到arr
						arr[index++] = bucket[k][l];
					}
				}
				//第i+1轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
				bucketElementCounts[k] = 0;
				
			}
		}
	}
}

3.测试结果

排序前的时间是=2020-09-27 20:40:34
排序前的时间是=2020-09-27 20:40:34
基数排序后 [3, 14, 53, 214, 542, 748]

九、常用排序算法总结和对比

在这里插入图片描述
在这里插入图片描述


版权声明:本文为weixin_43907062原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。