The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def load_raw(filename, volsize):
""" inspired by mhd_utils from github"""
dim = 3
element_channels = 1
np_type = np.ubyte
arr = list(volsize)
volume = np.prod(arr[0:dim - 1])
shape = (arr[dim - 1], volume, element_channels)
with open(filename,'rb') as fid:
data = np.fromfile(fid, count=np.prod(shape),dtype = np_type)
data.shape = shape
arr.reverse()
data = data.reshape(arr)
return data
Example 2
def read_gnt_in_directory(gnt_dirpath):
def samples(f):
header_size = 10
# read samples from f until no bytes remaining
while True:
header = np.fromfile(f, dtype='uint8', count=header_size)
if not header.size: break
sample_size = header[0] + (header[1]<<8) + (header[2]<<16) + (header[3]<<24)
tagcode = header[5] + (header[4]<<8)
width = header[6] + (header[7]<<8)
height = header[8] + (header[9]<<8)
assert header_size + width*height == sample_size
bitmap = np.fromfile(f, dtype='uint8', count=width*height).reshape((height, width))
yield bitmap, tagcode
for file_name in os.listdir(gnt_dirpath):
if file_name.endswith('.gnt'):
file_path = os.path.join(gnt_dirpath, file_name)
with open(file_path, 'rb') as f:
for bitmap, tagcode in samples(f):
yield bitmap, tagcode
Example 3
def read_flow(path, filename):
flowdata = None
with open(path + filename + '.flo') as f:
# Valid .flo file checker
magic = np.fromfile(f, np.float32, count=1)
if 202021.25 != magic:
print 'Magic number incorrect. Invalid .flo file'
else:
# Reshape data into 3D array (columns, rows, bands)
w = int(np.fromfile(f, np.int32, count=1))
h = int(np.fromfile(f, np.int32, count=1))
#print 'Reading {}.flo with shape: ({}, {}, 2)'.format(filename, h, w)
flowdata = np.fromfile(f, np.float32, count=2*w*h)
# NOTE: numpy shape(h, w, ch) is opposite to image shape(w, h, ch)
flowdata = np.reshape(flowdata, (h, w, 2))
return flowdata
Example 4
def _read(self, stream, text, byte_order):
'''
Read the actual data from a PLY file.
'''
if text:
self._read_txt(stream)
else:
if self._have_list:
# There are list properties, so a simple load is
# impossible.
self._read_bin(stream, byte_order)
else:
# There are no list properties, so loading the data is
# much more straightforward.
self._data = _np.fromfile(stream,
self.dtype(byte_order),
self.count)
if len(self._data) < self.count:
k = len(self._data)
del self._data
raise PlyParseError("early end-of-file", self, k)
self._check_sanity()
Example 5
def _read(self, stream, text, byte_order):
'''
Read the actual data from a PLY file.
'''
if self._have_list:
# There are list properties, so a simple load is
# impossible.
if text:
self._read_txt(stream)
else:
self._read_bin(stream, byte_order)
else:
# There are no list properties, so loading the data is
# much more straightforward.
if text:
self.data = _np.loadtxt(
_islice(iter(stream.readline, ''), self.count),
self.dtype())
else:
self.data = _np.fromfile(
stream, self.dtype(byte_order), self.count)
Example 6
def __read_annotations_old(self):
"""
Read the stimulus grid properties.
Returns a dictionary containing the parameter names as keys and the
parameter values as values.
------------------------------------------------
The returned objects must be added to the Block.
This reads an old version of the format that does not store paramater
names, so placeholder names are created instead.
ID: 29099
"""
# int16 * 14 -- an array of parameter values
values = np.fromfile(self._fsrc, dtype=np.int16, count=14)
# create dummy names and combine them with the values in a dict
# the dict will be added to the annotations
params = ['param%s' % i for i in range(len(values))]
annotations = dict(zip(params, values))
return annotations
Example 7
def __read_spike_fixed(self, numpts=40):
"""
Read a spike with a fixed waveform length (40 time bins)
-------------------------------------------
Returns the time, waveform and trig2 value.
The returned objects must be converted to a SpikeTrain then
added to the Block.
ID: 29079
"""
# float32 -- spike time stamp in ms since start of SpikeTrain
time = np.fromfile(self._fsrc, dtype=np.float32, count=1)
# int8 * 40 -- spike shape -- use numpts for spike_var
waveform = np.fromfile(self._fsrc, dtype=np.int8,
count=numpts).reshape(1, 1, numpts)
# uint8 -- point of return to noise
trig2 = np.fromfile(self._fsrc, dtype=np.uint8, count=1)
return time, waveform, trig2
Example 8
def __read_id(self):
'''
Read the next ID number and do the appropriate task with it.
Returns nothing.
'''
try:
# float32 -- ID of the first data sequence
objid = np.fromfile(self._fsrc, dtype=np.float32, count=1)[0]
except IndexError:
# if we have a previous segment, save it
self.__save_segment()
# if there are no more Segments, return
return False
if objid == -2:
self.__read_condition()
elif objid == -1:
self.__read_segment()
else:
self.__spiketimes.append(objid)
return True
Example 9
def __read_condition(self):
'''
Read the parameter values for a single stimulus condition.
Returns nothing.
'''
# float32 -- SpikeTrain length in ms
self.__t_stop = np.fromfile(self._fsrc, dtype=np.float32, count=1)[0]
# float32 -- number of stimulus parameters
numelements = int(np.fromfile(self._fsrc, dtype=np.float32,
count=1)[0])
# [float32] * numelements -- stimulus parameter values
paramvals = np.fromfile(self._fsrc, dtype=np.float32,
count=numelements).tolist()
# organize the parameers into a dictionary with arbitrary names
paramnames = ['Param%s' % i for i in range(len(paramvals))]
self.__params = dict(zip(paramnames, paramvals))
Example 10
def __extract_nsx_file_spec(self, nsx_nb):
"""
Extract file specification from an .nsx file.
"""
filename = '.'.join([self._filenames['nsx'], 'ns%i' % nsx_nb])
# Header structure of files specification 2.2 and higher. For files 2.1
# and lower, the entries ver_major and ver_minor are not supported.
dt0 = [
('file_id', 'S8'),
('ver_major', 'uint8'),
('ver_minor', 'uint8')]
nsx_file_id = np.fromfile(filename, count=1, dtype=dt0)[0]
if nsx_file_id['file_id'].decode() == 'NEURALSG':
spec = '2.1'
elif nsx_file_id['file_id'].decode() == 'NEURALCD':
spec = '{0}.{1}'.format(
nsx_file_id['ver_major'], nsx_file_id['ver_minor'])
else:
raise IOError('Unsupported NSX file type.')
return spec
Example 11
def __extract_nev_file_spec(self):
"""
Extract file specification from an .nsx file
"""
filename = '.'.join([self._filenames['nsx'], 'nev'])
# Header structure of files specification 2.2 and higher. For files 2.1
# and lower, the entries ver_major and ver_minor are not supported.
dt0 = [
('file_id', 'S8'),
('ver_major', 'uint8'),
('ver_minor', 'uint8')]
nev_file_id = np.fromfile(filename, count=1, dtype=dt0)[0]
if nev_file_id['file_id'].decode() == 'NEURALEV':
spec = '{0}.{1}'.format(
nev_file_id['ver_major'], nev_file_id['ver_minor'])
else:
raise IOError('NEV file type {0} is not supported'.format(
nev_file_id['file_id']))
return spec
Example 12
def __read_annotations_old(self):
"""
Read the stimulus grid properties.
Returns a dictionary containing the parameter names as keys and the
parameter values as values.
------------------------------------------------
The returned objects must be added to the Block.
This reads an old version of the format that does not store paramater
names, so placeholder names are created instead.
ID: 29099
"""
# int16 * 14 -- an array of parameter values
values = np.fromfile(self._fsrc, dtype=np.int16, count=14)
# create dummy names and combine them with the values in a dict
# the dict will be added to the annotations
params = ['param%s' % i for i in range(len(values))]
annotations = dict(zip(params, values))
return annotations
Example 13
def __read_spike_fixed(self, numpts=40):
"""
Read a spike with a fixed waveform length (40 time bins)
-------------------------------------------
Returns the time, waveform and trig2 value.
The returned objects must be converted to a SpikeTrain then
added to the Block.
ID: 29079
"""
# float32 -- spike time stamp in ms since start of SpikeTrain
time = np.fromfile(self._fsrc, dtype=np.float32, count=1)
# int8 * 40 -- spike shape -- use numpts for spike_var
waveform = np.fromfile(self._fsrc, dtype=np.int8,
count=numpts).reshape(1, 1, numpts)
# uint8 -- point of return to noise
trig2 = np.fromfile(self._fsrc, dtype=np.uint8, count=1)
return time, waveform, trig2
Example 14
def __read_spike_var(self):
"""
Read a spike with a variable waveform length
-------------------------------------------
Returns the time, waveform and trig2 value.
The returned objects must be converted to a SpikeTrain then
added to the Block.
ID: 29115
"""
# uint8 -- number of points in spike shape
numpts = np.fromfile(self._fsrc, dtype=np.uint8, count=1)[0]
# spike_fixed is the same as spike_var if you don't read the numpts
# byte and set numpts = 40
return self.__read_spike_fixed(numpts)
Example 15
def __read_condition(self):
'''
Read the parameter values for a single stimulus condition.
Returns nothing.
'''
# float32 -- SpikeTrain length in ms
self.__t_stop = np.fromfile(self._fsrc, dtype=np.float32, count=1)[0]
# float32 -- number of stimulus parameters
numelements = int(np.fromfile(self._fsrc, dtype=np.float32,
count=1)[0])
# [float32] * numelements -- stimulus parameter values
paramvals = np.fromfile(self._fsrc, dtype=np.float32,
count=numelements).tolist()
# organize the parameers into a dictionary with arbitrary names
paramnames = ['Param%s' % i for i in range(len(paramvals))]
self.__params = dict(zip(paramnames, paramvals))
Example 16
def __extract_nsx_file_spec(self, nsx_nb):
"""
Extract file specification from an .nsx file.
"""
filename = '.'.join([self._filenames['nsx'], 'ns%i' % nsx_nb])
# Header structure of files specification 2.2 and higher. For files 2.1
# and lower, the entries ver_major and ver_minor are not supported.
dt0 = [
('file_id', 'S8'),
('ver_major', 'uint8'),
('ver_minor', 'uint8')]
nsx_file_id = np.fromfile(filename, count=1, dtype=dt0)[0]
if nsx_file_id['file_id'].decode() == 'NEURALSG':
spec = '2.1'
elif nsx_file_id['file_id'].decode() == 'NEURALCD':
spec = '{0}.{1}'.format(
nsx_file_id['ver_major'], nsx_file_id['ver_minor'])
else:
raise IOError('Unsupported NSX file type.')
return spec
Example 17
def __extract_nev_file_spec(self):
"""
Extract file specification from an .nsx file
"""
filename = '.'.join([self._filenames['nsx'], 'nev'])
# Header structure of files specification 2.2 and higher. For files 2.1
# and lower, the entries ver_major and ver_minor are not supported.
dt0 = [
('file_id', 'S8'),
('ver_major', 'uint8'),
('ver_minor', 'uint8')]
nev_file_id = np.fromfile(filename, count=1, dtype=dt0)[0]
if nev_file_id['file_id'].decode() == 'NEURALEV':
spec = '{0}.{1}'.format(
nev_file_id['ver_major'], nev_file_id['ver_minor'])
else:
raise IOError('NEV file type {0} is not supported'.format(
nev_file_id['file_id']))
return spec
Example 18
def readheader(self):
self.fh.seek(0,0)
spam = self.fh.read(12)
self.nSamples, self.sampPeriod, self.sampSize, self.parmKind = \
unpack(">IIHH", spam)
# Get coefficients for compressed data
if self.parmKind & _C:
self.dtype = 'h'
self.veclen = self.sampSize / 2
if self.parmKind & 0x3f == IREFC:
self.A = 32767
self.B = 0
else:
self.A = numpy.fromfile(self.fh, 'f', self.veclen)
self.B = numpy.fromfile(self.fh, 'f', self.veclen)
if self.swap:
self.A = self.A.byteswap()
self.B = self.B.byteswap()
else:
self.dtype = 'f'
self.veclen = self.sampSize / 4
self.hdrlen = self.fh.tell()
Example 19
def test_silence_frame_removal_given_hts_labels():
qs_file_name = join(DATA_DIR, "questions-radio_dnn_416.hed")
binary_dict, continuous_dict = hts.load_question_set(qs_file_name)
input_state_label = join(DATA_DIR, "label_state_align", "arctic_a0001.lab")
labels = hts.load(input_state_label)
features = fe.linguistic_features(labels,
binary_dict,
continuous_dict,
add_frame_features=True,
subphone_features="full"
)
# Remove silence frames
indices = labels.silence_frame_indices()
features = np.delete(features, indices, axis=0)
y = np.fromfile(join(DATA_DIR, "nn_no_silence_lab_425", "arctic_a0001.lab"),
dtype=np.float32).reshape(-1, features.shape[-1])
assert features.shape == y.shape
assert np.allclose(features, y)
# Make sure we can get same results with Merlin
Example 20
def test_linguistic_features_for_acoustic_model():
qs_file_name = join(DATA_DIR, "questions-radio_dnn_416.hed")
binary_dict, continuous_dict = hts.load_question_set(qs_file_name)
# Linguistic features
# To train acoustic model paired with linguistic features,
# we need frame-level linguistic feature representation.
input_state_label = join(DATA_DIR, "label_state_align", "arctic_a0001.lab")
labels = hts.load(input_state_label)
assert labels.is_state_alignment_label()
x = fe.linguistic_features(labels,
binary_dict,
continuous_dict,
add_frame_features=True,
subphone_features="full"
)
y = np.fromfile(join(DATA_DIR, "binary_label_425",
"arctic_a0001.lab"), dtype=np.float32).reshape(-1, x.shape[-1])
assert np.allclose(x, y)
Example 21
def read_array(self, dtype, count=-1, sep=""):
"""Return numpy array from file.
Work around numpy issue #2230, "numpy.fromfile does not accept
StringIO object" https://github.com/numpy/numpy/issues/2230.
"""
try:
return numpy.fromfile(self._fh, dtype, count, sep)
except IOError:
if count < 0:
size = self._size
else:
size = count * numpy.dtype(dtype).itemsize
data = self._fh.read(size)
return numpy.fromstring(data, dtype, count, sep)
Example 22
def test_file_position_after_fromfile(self):
# gh-4118
sizes = [io.DEFAULT_BUFFER_SIZE//8,
io.DEFAULT_BUFFER_SIZE,
io.DEFAULT_BUFFER_SIZE*8]
for size in sizes:
f = open(self.filename, 'wb')
f.seek(size-1)
f.write(b'\0')
f.close()
for mode in ['rb', 'r+b']:
err_msg = "%d %s" % (size, mode)
f = open(self.filename, mode)
f.read(2)
np.fromfile(f, dtype=np.float64, count=1)
pos = f.tell()
f.close()
assert_equal(pos, 10, err_msg=err_msg)
Example 23
def test_big_binary(self):
"""Test workarounds for 32-bit limited fwrite, fseek, and ftell
calls in windows. These normally would hang doing something like this.
See http://projects.scipy.org/numpy/ticket/1660"""
if sys.platform != 'win32':
return
try:
# before workarounds, only up to 2**32-1 worked
fourgbplus = 2**32 + 2**16
testbytes = np.arange(8, dtype=np.int8)
n = len(testbytes)
flike = tempfile.NamedTemporaryFile()
f = flike.file
np.tile(testbytes, fourgbplus // testbytes.nbytes).tofile(f)
flike.seek(0)
a = np.fromfile(f, dtype=np.int8)
flike.close()
assert_(len(a) == fourgbplus)
# check only start and end for speed:
assert_((a[:n] == testbytes).all())
assert_((a[-n:] == testbytes).all())
except (MemoryError, ValueError):
pass
Example 24
def load_mnist(data_dir):
fd = open(os.path.join(data_dir,'train-images-idx3-ubyte'))
loaded = np.fromfile(file=fd,dtype=np.uint8)
trX = loaded[16:].reshape((60000,np.prod(input_shape))).astype(float) / 255
fd = open(os.path.join(data_dir,'train-labels-idx1-ubyte'))
loaded = np.fromfile(file=fd,dtype=np.uint8)
trY = loaded[8:].reshape((60000))
fd = open(os.path.join(data_dir,'t10k-images-idx3-ubyte'))
loaded = np.fromfile(file=fd,dtype=np.uint8)
teX = loaded[16:].reshape((10000,np.prod(input_shape))).astype(float) / 255
fd = open(os.path.join(data_dir,'t10k-labels-idx1-ubyte'))
loaded = np.fromfile(file=fd,dtype=np.uint8)
teY = loaded[8:].reshape((10000))
trY = np.asarray(trY)
teY = np.asarray(teY)
return trX, teX, trY, teY
Example 25
def load_pfm(filepath, reverse = 1):
file = open(filepath, 'rb')
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
color = (header == 'PF')
width, height = map(int, file.readline().strip().split(' '))
scale = float(file.readline().rstrip())
endian = ''
scale = abs(scale)
rawdata = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)
file.close()
if(color):
return rawdata.reshape(shape).astype(np.float32)[:,:,::-1]
else:
return rawdata.reshape(shape).astype(np.float32)
Example 26
def mnist():
fd = open(os.path.join(data_dir, 'train-images-idx3-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
trX = loaded[16:].reshape((60000, 28 * 28)).astype(float)
fd = open(os.path.join(data_dir, 'train-labels-idx1-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
trY = loaded[8:].reshape((60000))
fd = open(os.path.join(data_dir, 't10k-images-idx3-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
teX = loaded[16:].reshape((10000, 28 * 28)).astype(float)
fd = open(os.path.join(data_dir, 't10k-labels-idx1-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
teY = loaded[8:].reshape((10000))
trY = np.asarray(trY)
teY = np.asarray(teY)
return trX, teX, trY, teY
Example 27
def _holes_of_line(self, line=0):
try:
amount_of_holes, hole_id = self.hole_registry[line]
for i in range(amount_of_holes):
self.hole_coord_amount.seek(2 * hole_id)
nr_of_values = unpack(b'
self.hole_adr2data.seek(4 * hole_id)
self.hole_data.seek(unpack(b'
yield array([fromfile(self.hole_data, dtype='
fromfile(self.hole_data, dtype='
hole_id += 1
except KeyError:
return
Example 28
def readFile(self, filename):
'''
readFile(filename)
Reads a GDSII file and populate the library object
Parameters
----------
filename : string
Name of GDSII file
'''
if not isinstance(filename,str):
raise TypeError('GDSII_Library.readFile() : The filename must be a string')
if filename[-4:].lower() == '.gds':
filename = filename[:-4]
f = open(filename + '.gds','rb')
record = np.fromfile(f, dtype=np.uint8)
f.close()
self.readRecord(record)
Example 29
def create_bfcr(filename):
"""Creates a BFCR instance for a given file.
This helper function loads a label file and its corrosponding mgc file and
creates a bfcr file from them. The paths of both files are determined
automatically.
:params filename: filename from which the BFCR instaces are created
:returns: an instance of the BFCR class
"""
filename = os.path.splitext(os.path.basename(filename))[0]
label_file = LABEL_DIR + filename + '.lab'
mgc_file = MGC_DIR + filename + '.mgc'
mgc_matrix = np.fromfile(mgc_file, dtype=np.float32).reshape(-1, MGCORD+1)
bfcr = BFCR(label_file)
bfcr.encode_feature(mgc_matrix, 'mgc', NUM_BASES)
return bfcr
Example 30
def _load_original_matrix(self):
"""Loades the original mgc matrix for the test file.
This helper method loads the original matrix from the *.mgc file and
matrix for the test file and also computes the staring times of the
different phones.
:returns: the original mgc matrix
:returns: starting times of the phones
"""
mgc_matrix = np.fromfile(MGC_DIR + self._filename + '.mgc', dtype=np.float32).reshape(-1, MGCORD+1)
label = Label(LABEL_DIR + self._filename + '.lab')
step_size = mgc_matrix.shape[0]/label.last_phone_end
phone_starts = [int(round(p[1]*step_size)) for p in label.cur_phones_additions()]
return mgc_matrix, phone_starts
Example 31
def parse(self):
fname = self.fname.text()
if os.path.isfile(fname):
f = open(fname, "r")
else:
sys.stderr.write("Unable to open %s\n"%fname)
return
self.vol = np.fromfile(f, dtype='f8')
self.size = int(np.ceil(np.power(len(self.vol), 1./3.)))
self.vol = self.vol.reshape(self.size, self.size, self.size)
self.center = self.size/2
if not self.image_exists:
self.layer_slider.setRange(0, self.size-1)
self.layernum.setMaximum(self.size-1)
self.layer_slider.setValue(self.center)
self.layerslider_moved(self.center)
self.old_fname = fname
Example 32
def _parse_headers(self):
self.num_data_list = []
self.ones_accum_list = []
self.multi_accum_list = []
self.num_pix = []
for i, photons_file in enumerate(self.photons_list):
with open(photons_file, 'rb') as f:
num_data = np.fromfile(f, dtype='i4', count=1)[0]
self.num_pix.append(np.fromfile(f, dtype='i4', count=1)[0])
if self.num_pix[i] != len(self.geom_list[i].x):
sys.stderr.write('Warning: num_pix for %s is different (%d vs %d)\n' % (photons_file, self.num_pix[i], len(self.geom_list[i].x)))
f.seek(1024, 0)
ones = np.fromfile(f, dtype='i4', count=num_data)
multi = np.fromfile(f, dtype='i4', count=num_data)
self.num_data_list.append(num_data)
self.ones_accum_list.append(np.cumsum(ones))
self.multi_accum_list.append(np.cumsum(multi))
self.num_data_list = np.cumsum(self.num_data_list)
self.num_frames = self.num_data_list[-1]
Example 33
def get_fiedler_julia(mat, julia_path, julia_fiedler_script):
# Construct Laplacian
(iis, jjs, vvs) = find(mat)
n = mat.shape[0]
# add a random number to the filename to avoid inconsistent writes and reads with multiprocessing
randn = randrange(1000)
# write to csv
itempf = 'mat_coords_iis_%d_%d.csv' % (n, randn)
iis.tofile(itempf, sep=',')
jtempf = 'mat_coords_jjs_%d_%d.csv' % (n, randn)
jjs.tofile(jtempf, sep=',')
vtempf = 'mat_data.csv_%d_%d' % (n, randn)
vvs.tofile(vtempf, sep=',')
outf = 'temp_fidvec_%d_%d.csv' % (n, randn)
# call julia
cmd = [julia_path, julia_fiedler_script, itempf, jtempf, vtempf, outf]
subprocess.call(cmd)
# remove temporary files
os.remove(itempf)
os.remove(jtempf)
os.remove(vtempf)
# check output looks OK and return permutation
if os.path.exists(outf):
myperm = np.fromfile(outf, dtype=int, sep=',')
myperm = myperm - 1
os.remove(outf)
if (len(myperm) == mat.shape[0]):
return myperm
else:
return np.arange(n)
# output identity permutation if something went wrong
else:
return np.arange(n)
Example 34
def read_data(self, start=None, end=None):
"""read data from file and store it locally"""
nframe = self._find_nframe_from_file()
seek_to_data(self.file_object)
read_start = 0
end_read = nframe * self.nifs * self.nchans
if start is not None:
if start < 0:
read_start = (nframe + start) * self.nifs * self.nchans
elif start >= 0:
read_start = start * self.nifs * self.nchans
if end is not None:
if end < 0:
end_read = (nframe + end) * self.nifs * self.nchans
elif end >= 0:
end_read = end * self.nifs * self.nchans
self.file_object.seek(read_start, os.SEEK_CUR)
nbytes_to_read = end_read - read_start
data = np.fromfile(self.file_object, count=nbytes_to_read, dtype=self.dtype)
nframe = data.size // self.nifs // self.nchans
data = data.reshape((nframe, self.nifs, self.nchans))
if self.nbits < 8:
data = unpack(data, self.nbits)
self.data = data
return self.data
Example 35
def readheader(self):
self.fh.seek(0,0)
spam = self.fh.read(12)
self.nSamples, self.sampPeriod, self.sampSize, self.parmKind = \
unpack(">IIHH", spam)
# Get coefficients for compressed data
if self.parmKind & _C:
self.dtype = 'h'
self.veclen = self.sampSize / 2
if self.parmKind & 0x3f == IREFC:
self.A = 32767
self.B = 0
else:
self.A = numpy.fromfile(self.fh, 'f', self.veclen)
self.B = numpy.fromfile(self.fh, 'f', self.veclen)
if self.swap:
self.A = self.A.byteswap()
self.B = self.B.byteswap()
else:
self.dtype = 'f'
self.veclen = self.sampSize / 4
self.hdrlen = self.fh.tell()
self.veclen = int(self.veclen)
Example 36
def read_from_gnt_dir(gnt_dir=train_data_dir):
def one_file(f):
header_size = 10
while True:
header = np.fromfile(f, dtype='uint8', count=header_size)
if not header.size: break
sample_size = header[0] + (header[1]<<8) + (header[2]<<16) + (header[3]<<24)
tagcode = header[5] + (header[4]<<8)
width = header[6] + (header[7]<<8)
height = header[8] + (header[9]<<8)
if header_size + width*height != sample_size:
break
image = np.fromfile(f, dtype='uint8', count=width*height).reshape((height, width))
yield image, tagcode
for file_name in os.listdir(gnt_dir):
if file_name.endswith('.gnt'):
file_path = os.path.join(gnt_dir, file_name)
with open(file_path, 'rb') as f:
for image, tagcode in one_file(f):
yield image, tagcode
Example 37
def read_from_gnt_dir(gnt_dir=train_data_dir):
def one_file(f):
header_size = 10
while True:
header = np.fromfile(f, dtype='uint8', count=header_size)
if not header.size: break
sample_size = header[0] + (header[1]<<8) + (header[2]<<16) + (header[3]<<24)
tagcode = header[5] + (header[4]<<8)
width = header[6] + (header[7]<<8)
height = header[8] + (header[9]<<8)
if header_size + width*height != sample_size:
break
image = np.fromfile(f, dtype='uint8', count=width*height).reshape((height, width))
yield image, tagcode
for file_name in os.listdir(gnt_dir):
if file_name.endswith('.gnt'):
file_path = os.path.join(gnt_dir, file_name)
with open(file_path, 'rb') as f:
for image, tagcode in one_file(f):
yield image, tagcode
Example 38
def read_from_gnt_dir(gnt_dir=train_data_dir):
def one_file(f):
header_size = 10
while True:
header = np.fromfile(f, dtype='uint8', count=header_size)
if not header.size: break
sample_size = header[0] + (header[1]<<8) + (header[2]<<16) + (header[3]<<24)
tagcode = header[5] + (header[4]<<8)
width = header[6] + (header[7]<<8)
height = header[8] + (header[9]<<8)
if header_size + width*height != sample_size:
break
image = np.fromfile(f, dtype='uint8', count=width*height).reshape((height, width))
yield image, tagcode
for file_name in os.listdir(gnt_dir):
if file_name.endswith('.gnt'):
file_path = os.path.join(gnt_dir, file_name)
with open(file_path, 'rb') as f:
for image, tagcode in one_file(f):
yield image, tagcode
# ?????
Example 39
def get_embedding():
embedding_path = os.path.join(FLAGS.datasets_dir, "wordVectors.txt")
if not tf.gfile.Exists(embedding_path):
raise ValueError("embedding file not exists")
# embedding = np.fromfile(embedding_path, sep=' ')
# print("embedding size:", embedding.shape)
# print("embedding size:", embedding.dtype)
# embedding.reshape(100232, 50)
# print("embedding size:", embedding.shape)
data = np.fromfile(embedding_path, dtype=np.float32, sep=' ')
print("shape:", data.shape)
print("ndim:", data.ndim)
print("dtype:", data.dtype)
print(data)
print("reshape vocabulary")
d = data.reshape((-1, 50))
print("shape:", d.shape)
print("ndim:", d.ndim)
print("dtype:", d.dtype)
print(d)
return d
Example 40
def plot_conf_mat(densmap_name):
fig = plt.figure(figsize = (20,20))
plt.clf()
ax = fig.add_subplot(111)
#ax.set_aspect(1)
densmap = np.fromfile(densmap_name, np.float32)
densmap = densmap.reshape(227, 227)
densmap *= 100
densmap[densmap > 1] = 1
res = ax.imshow(densmap, cmap = plt.cm.jet,
interpolation = 'nearest')
plt.savefig('density.jpg')
img = cv2.imread("density.jpg")
img = cv2.resize(img, (227,227))
cv2.imshow("i", img)#
cv2.waitKey(0)
#plt.show()
Example 41
def load_mnist(self):
data_dir = os.path.join("./data", "mnist")
fd = open(os.path.join(data_dir, 'train-images-idx3-ubyte'))
loaded = np.fromfile(file=fd , dtype=np.uint8)
trX = loaded[16:].reshape((60000, 28 , 28 , 1)).astype(np.float)
fd = open(os.path.join(data_dir, 'train-labels-idx1-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
trY = loaded[8:].reshape((60000)).astype(np.float)
fd = open(os.path.join(data_dir, 't10k-images-idx3-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
teX = loaded[16:].reshape((10000, 28 , 28 , 1)).astype(np.float)
fd = open(os.path.join(data_dir, 't10k-labels-idx1-ubyte'))
loaded = np.fromfile(file=fd, dtype=np.uint8)
teY = loaded[8:].reshape((10000)).astype(np.float)
trY = np.asarray(trY)
teY = np.asarray(teY)
X = np.concatenate((trX, teX), axis=0)
y = np.concatenate((trY, teY), axis=0)
seed = 547
np.random.seed(seed)
np.random.shuffle(X)
np.random.seed(seed)
np.random.shuffle(y)
#convert label to one-hot
y_vec = np.zeros((len(y), 10), dtype=np.float)
for i, label in enumerate(y):
y_vec[i, int(y[i])] = 1.0
return X / 255. , y_vec
Example 42
def unpack(stream):
base = stream.tell()
header = Header.unpack(stream)
influence_groups = [None]*header.influence_group_count
inverse_bind_matrices = None
stream.seek(base + header.influence_count_offset)
for i in range(header.influence_group_count):
influence_count = uint8.unpack(stream)
influence_groups[i] = [Influence(None,None) for _ in range(influence_count)]
stream.seek(base + header.index_offset)
for influence_group in influence_groups:
for influence in influence_group:
influence.index = uint16.unpack(stream)
stream.seek(base + header.weight_offset)
for influence_group in influence_groups:
for influence in influence_group:
influence.weight = float32.unpack(stream)
if header.inverse_bind_matrix_offset != 0:
stream.seek(base + header.inverse_bind_matrix_offset)
element_type = numpy.dtype((numpy.float32,(3,4))).newbyteorder('>')
element_count = (header.section_size - header.inverse_bind_matrix_offset)//element_type.itemsize
inverse_bind_matrices = numpy.fromfile(stream,element_type,element_count)
stream.seek(base + header.section_size)
return influence_groups,inverse_bind_matrices
Example 43
def unpack_array(stream,attribute_format,size):
if attribute_format.attribute == gx.VA_POS:
component_type = gx.ComponentType(attribute_format.component_type)
component_count = gx.PositionComponentCount(attribute_format.component_count)
array_type = Array
elif attribute_format.attribute == gx.VA_NRM:
component_type = gx.ComponentType(attribute_format.component_type)
component_count = gx.NormalComponentCount(attribute_format.component_count)
array_type = Array
elif attribute_format.attribute in gx.VA_CLR:
component_type = gx.ColorComponentType(attribute_format.component_type)
component_count = gx.ColorComponentCount(attribute_format.component_count)
array_type = ColorArray
elif attribute_format.attribute in gx.VA_TEX:
component_type = gx.ComponentType(attribute_format.component_type)
component_count = gx.TexCoordComponentCount(attribute_format.component_count)
array_type = Array
else:
raise FormatError('invalid vertex attribute')
element_type = array_type.create_element_type(component_type,component_count)
element_count = size//element_type.itemsize
array = numpy.fromfile(stream,element_type,element_count).view(array_type)
array.attribute = attribute_format.attribute
array.component_type = component_type
array.component_count = component_count
array.scale_exponent = attribute_format.scale_exponent
return array
Example 44
def _read_bin(self, stream, byte_order):
'''
Read data from a binary stream. Raise StopIteration if the
property could not be read.
'''
try:
return _np.fromfile(stream, self.dtype(byte_order), 1)[0]
except IndexError:
raise StopIteration
Example 45
def _read_bin(self, stream, byte_order):
(len_t, val_t) = self.list_dtype(byte_order)
try:
n = _np.fromfile(stream, len_t, 1)[0]
except IndexError:
raise StopIteration
data = _np.fromfile(stream, val_t, n)
if len(data) < n:
raise StopIteration
return data
Example 46
def convert_f0(f0, src, trg):
mu_s, std_s = np.fromfile(os.path.join('./etc', '{}.npf'.format(src)), np.float32)
mu_t, std_t = np.fromfile(os.path.join('./etc', '{}.npf'.format(trg)), np.float32)
lf0 = tf.where(f0 > 1., tf.log(f0), f0)
lf0 = tf.where(lf0 > 1., (lf0 - mu_s)/std_s * std_t + mu_t, lf0)
lf0 = tf.where(lf0 > 1., tf.exp(lf0), lf0)
return lf0
Example 47
def test():
# ==== Test: batch mixer (conclusion: capacity should be larger to make sure good mixing) ====
x, y = read('./dataset/vcc2016/bin/*/*/1*001.bin', 32, min_after_dequeue=1024, capacity=2048)
sv = tf.train.Supervisor()
with sv.managed_session() as sess:
for _ in range(200):
x_, y_ = sess.run([x, y])
print(y_)
# ===== Read binary ====
features = read_whole_features('./dataset/vcc2016/bin/Training Set/SF1/*001.bin')
sv = tf.train.Supervisor()
with sv.managed_session() as sess:
features = sess.run(features)
y = pw2wav(features)
sf.write('test1.wav', y, 16000) # TODO fs should be specified externally.
# ==== Direct read =====
f = './dataset/vcc2016/bin/Training Set/SF1/100001.bin'
features = np.fromfile(f, np.float32)
features = np.reshape(features, [-1, 513*2 + 1 + 1 + 1]) # f0, en, spk
y = pw2wav(features)
sf.write('test2.wav', y, 16000)
Example 48
def read_float64_as_float32(filename):
x = np.fromfile(filename, np.float64)
return x.astype(np.float32)
Example 49
def main():
''' NOTE: The input is rescaled to [-1, 1] '''
dirs = validate_log_dirs(args)
tf.gfile.MakeDirs(dirs['logdir'])
with open(args.architecture) as f:
arch = json.load(f)
with open(os.path.join(dirs['logdir'], args.architecture), 'w') as f:
json.dump(arch, f, indent=4)
normalizer = Tanhize(
xmax=np.fromfile('./etc/xmax.npf'),
xmin=np.fromfile('./etc/xmin.npf'),
)
image, label = read(
file_pattern=arch['training']['datadir'],
batch_size=arch['training']['batch_size'],
capacity=2048,
min_after_dequeue=1024,
normalizer=normalizer,
)
machine = MODEL(arch)
loss = machine.loss(image, label)
trainer = TRAINER(loss, arch, args, dirs)
trainer.train(nIter=arch['training']['max_iter'], machine=machine)
Example 50
def _read_bin(self, stream, byte_order):
'''
Read data from a binary stream.
'''
return _np.fromfile(stream, self.dtype(byte_order), 1)[0]