python fromfile_Python numpy.fromfile() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def load_raw(filename, volsize):

""" inspired by mhd_utils from github"""

dim = 3

element_channels = 1

np_type = np.ubyte

arr = list(volsize)

volume = np.prod(arr[0:dim - 1])

shape = (arr[dim - 1], volume, element_channels)

with open(filename,'rb') as fid:

data = np.fromfile(fid, count=np.prod(shape),dtype = np_type)

data.shape = shape

arr.reverse()

data = data.reshape(arr)

return data

Example 2

def read_gnt_in_directory(gnt_dirpath):

def samples(f):

header_size = 10

# read samples from f until no bytes remaining

while True:

header = np.fromfile(f, dtype='uint8', count=header_size)

if not header.size: break

sample_size = header[0] + (header[1]<<8) + (header[2]<<16) + (header[3]<<24)

tagcode = header[5] + (header[4]<<8)

width = header[6] + (header[7]<<8)

height = header[8] + (header[9]<<8)

assert header_size + width*height == sample_size

bitmap = np.fromfile(f, dtype='uint8', count=width*height).reshape((height, width))

yield bitmap, tagcode

for file_name in os.listdir(gnt_dirpath):

if file_name.endswith('.gnt'):

file_path = os.path.join(gnt_dirpath, file_name)

with open(file_path, 'rb') as f:

for bitmap, tagcode in samples(f):

yield bitmap, tagcode

Example 3

def read_flow(path, filename):

flowdata = None

with open(path + filename + '.flo') as f:

# Valid .flo file checker

magic = np.fromfile(f, np.float32, count=1)

if 202021.25 != magic:

print 'Magic number incorrect. Invalid .flo file'

else:

# Reshape data into 3D array (columns, rows, bands)

w = int(np.fromfile(f, np.int32, count=1))

h = int(np.fromfile(f, np.int32, count=1))

#print 'Reading {}.flo with shape: ({}, {}, 2)'.format(filename, h, w)

flowdata = np.fromfile(f, np.float32, count=2*w*h)

# NOTE: numpy shape(h, w, ch) is opposite to image shape(w, h, ch)

flowdata = np.reshape(flowdata, (h, w, 2))

return flowdata

Example 4

def _read(self, stream, text, byte_order):

'''

Read the actual data from a PLY file.

'''

if text:

self._read_txt(stream)

else:

if self._have_list:

# There are list properties, so a simple load is

# impossible.

self._read_bin(stream, byte_order)

else:

# There are no list properties, so loading the data is

# much more straightforward.

self._data = _np.fromfile(stream,

self.dtype(byte_order),

self.count)

if len(self._data) < self.count:

k = len(self._data)

del self._data

raise PlyParseError("early end-of-file", self, k)

self._check_sanity()

Example 5

def _read(self, stream, text, byte_order):

'''

Read the actual data from a PLY file.

'''

if self._have_list:

# There are list properties, so a simple load is

# impossible.

if text:

self._read_txt(stream)

else:

self._read_bin(stream, byte_order)

else:

# There are no list properties, so loading the data is

# much more straightforward.

if text:

self.data = _np.loadtxt(

_islice(iter(stream.readline, ''), self.count),

self.dtype())

else:

self.data = _np.fromfile(

stream, self.dtype(byte_order), self.count)

Example 6

def __read_annotations_old(self):

"""

Read the stimulus grid properties.

Returns a dictionary containing the parameter names as keys and the

parameter values as values.

------------------------------------------------

The returned objects must be added to the Block.

This reads an old version of the format that does not store paramater

names, so placeholder names are created instead.

ID: 29099

"""

# int16 * 14 -- an array of parameter values

values = np.fromfile(self._fsrc, dtype=np.int16, count=14)

# create dummy names and combine them with the values in a dict

# the dict will be added to the annotations

params = ['param%s' % i for i in range(len(values))]

annotations = dict(zip(params, values))

return annotations

Example 7

def __read_spike_fixed(self, numpts=40):

"""

Read a spike with a fixed waveform length (40 time bins)

-------------------------------------------

Returns the time, waveform and trig2 value.

The returned objects must be converted to a SpikeTrain then

added to the Block.

ID: 29079

"""

# float32 -- spike time stamp in ms since start of SpikeTrain

time = np.fromfile(self._fsrc, dtype=np.float32, count=1)

# int8 * 40 -- spike shape -- use numpts for spike_var

waveform = np.fromfile(self._fsrc, dtype=np.int8,

count=numpts).reshape(1, 1, numpts)

# uint8 -- point of return to noise

trig2 = np.fromfile(self._fsrc, dtype=np.uint8, count=1)

return time, waveform, trig2

Example 8

def __read_id(self):

'''

Read the next ID number and do the appropriate task with it.

Returns nothing.

'''

try:

# float32 -- ID of the first data sequence

objid = np.fromfile(self._fsrc, dtype=np.float32, count=1)[0]

except IndexError:

# if we have a previous segment, save it

self.__save_segment()

# if there are no more Segments, return

return False

if objid == -2:

self.__read_condition()

elif objid == -1:

self.__read_segment()

else:

self.__spiketimes.append(objid)

return True

Example 9

def __read_condition(self):

'''

Read the parameter values for a single stimulus condition.

Returns nothing.

'''

# float32 -- SpikeTrain length in ms

self.__t_stop = np.fromfile(self._fsrc, dtype=np.float32, count=1)[0]

# float32 -- number of stimulus parameters

numelements = int(np.fromfile(self._fsrc, dtype=np.float32,

count=1)[0])

# [float32] * numelements -- stimulus parameter values

paramvals = np.fromfile(self._fsrc, dtype=np.float32,

count=numelements).tolist()

# organize the parameers into a dictionary with arbitrary names

paramnames = ['Param%s' % i for i in range(len(paramvals))]

self.__params = dict(zip(paramnames, paramvals))

Example 10

def __extract_nsx_file_spec(self, nsx_nb):

"""

Extract file specification from an .nsx file.

"""

filename = '.'.join([self._filenames['nsx'], 'ns%i' % nsx_nb])

# Header structure of files specification 2.2 and higher. For files 2.1

# and lower, the entries ver_major and ver_minor are not supported.

dt0 = [

('file_id', 'S8'),

('ver_major', 'uint8'),

('ver_minor', 'uint8')]

nsx_file_id = np.fromfile(filename, count=1, dtype=dt0)[0]

if nsx_file_id['file_id'].decode() == 'NEURALSG':

spec = '2.1'

elif nsx_file_id['file_id'].decode() == 'NEURALCD':

spec = '{0}.{1}'.format(

nsx_file_id['ver_major'], nsx_file_id['ver_minor'])

else:

raise IOError('Unsupported NSX file type.')

return spec

Example 11

def __extract_nev_file_spec(self):

"""

Extract file specification from an .nsx file

"""

filename = '.'.join([self._filenames['nsx'], 'nev'])

# Header structure of files specification 2.2 and higher. For files 2.1

# and lower, the entries ver_major and ver_minor are not supported.

dt0 = [

('file_id', 'S8'),

('ver_major', 'uint8'),

('ver_minor', 'uint8')]

nev_file_id = np.fromfile(filename, count=1, dtype=dt0)[0]

if nev_file_id['file_id'].decode() == 'NEURALEV':

spec = '{0}.{1}'.format(

nev_file_id['ver_major'], nev_file_id['ver_minor'])

else:

raise IOError('NEV file type {0} is not supported'.format(

nev_file_id['file_id']))

return spec

Example 12

def __read_annotations_old(self):

"""

Read the stimulus grid properties.

Returns a dictionary containing the parameter names as keys and the

parameter values as values.

------------------------------------------------

The returned objects must be added to the Block.

This reads an old version of the format that does not store paramater

names, so placeholder names are created instead.

ID: 29099

"""

# int16 * 14 -- an array of parameter values

values = np.fromfile(self._fsrc, dtype=np.int16, count=14)

# create dummy names and combine them with the values in a dict

# the dict will be added to the annotations

params = ['param%s' % i for i in range(len(values))]

annotations = dict(zip(params, values))

return annotations

Example 13

def __read_spike_fixed(self, numpts=40):

"""

Read a spike with a fixed waveform length (40 time bins)

-------------------------------------------

Returns the time, waveform and trig2 value.

The returned objects must be converted to a SpikeTrain then

added to the Block.

ID: 29079

"""

# float32 -- spike time stamp in ms since start of SpikeTrain

time = np.fromfile(self._fsrc, dtype=np.float32, count=1)

# int8 * 40 -- spike shape -- use numpts for spike_var

waveform = np.fromfile(self._fsrc, dtype=np.int8,

count=numpts).reshape(1, 1, numpts)

# uint8 -- point of return to noise

trig2 = np.fromfile(self._fsrc, dtype=np.uint8, count=1)

return time, waveform, trig2

Example 14

def __read_spike_var(self):

"""

Read a spike with a variable waveform length

-------------------------------------------

Returns the time, waveform and trig2 value.

The returned objects must be converted to a SpikeTrain then

added to the Block.

ID: 29115

"""

# uint8 -- number of points in spike shape

numpts = np.fromfile(self._fsrc, dtype=np.uint8, count=1)[0]

# spike_fixed is the same as spike_var if you don't read the numpts

# byte and set numpts = 40

return self.__read_spike_fixed(numpts)

Example 15

def __read_condition(self):

'''

Read the parameter values for a single stimulus condition.

Returns nothing.

'''

# float32 -- SpikeTrain length in ms

self.__t_stop = np.fromfile(self._fsrc, dtype=np.float32, count=1)[0]

# float32 -- number of stimulus parameters

numelements = int(np.fromfile(self._fsrc, dtype=np.float32,

count=1)[0])

# [float32] * numelements -- stimulus parameter values

paramvals = np.fromfile(self._fsrc, dtype=np.float32,

count=numelements).tolist()

# organize the parameers into a dictionary with arbitrary names

paramnames = ['Param%s' % i for i in range(len(paramvals))]

self.__params = dict(zip(paramnames, paramvals))

Example 16

def __extract_nsx_file_spec(self, nsx_nb):

"""

Extract file specification from an .nsx file.

"""

filename = '.'.join([self._filenames['nsx'], 'ns%i' % nsx_nb])

# Header structure of files specification 2.2 and higher. For files 2.1

# and lower, the entries ver_major and ver_minor are not supported.

dt0 = [

('file_id', 'S8'),

('ver_major', 'uint8'),

('ver_minor', 'uint8')]

nsx_file_id = np.fromfile(filename, count=1, dtype=dt0)[0]

if nsx_file_id['file_id'].decode() == 'NEURALSG':

spec = '2.1'

elif nsx_file_id['file_id'].decode() == 'NEURALCD':

spec = '{0}.{1}'.format(

nsx_file_id['ver_major'], nsx_file_id['ver_minor'])

else:

raise IOError('Unsupported NSX file type.')

return spec

Example 17

def __extract_nev_file_spec(self):

"""

Extract file specification from an .nsx file

"""

filename = '.'.join([self._filenames['nsx'], 'nev'])

# Header structure of files specification 2.2 and higher. For files 2.1

# and lower, the entries ver_major and ver_minor are not supported.

dt0 = [

('file_id', 'S8'),

('ver_major', 'uint8'),

('ver_minor', 'uint8')]

nev_file_id = np.fromfile(filename, count=1, dtype=dt0)[0]

if nev_file_id['file_id'].decode() == 'NEURALEV':

spec = '{0}.{1}'.format(

nev_file_id['ver_major'], nev_file_id['ver_minor'])

else:

raise IOError('NEV file type {0} is not supported'.format(

nev_file_id['file_id']))

return spec

Example 18

def readheader(self):

self.fh.seek(0,0)

spam = self.fh.read(12)

self.nSamples, self.sampPeriod, self.sampSize, self.parmKind = \

unpack(">IIHH", spam)

# Get coefficients for compressed data

if self.parmKind & _C:

self.dtype = 'h'

self.veclen = self.sampSize / 2

if self.parmKind & 0x3f == IREFC:

self.A = 32767

self.B = 0

else:

self.A = numpy.fromfile(self.fh, 'f', self.veclen)

self.B = numpy.fromfile(self.fh, 'f', self.veclen)

if self.swap:

self.A = self.A.byteswap()

self.B = self.B.byteswap()

else:

self.dtype = 'f'

self.veclen = self.sampSize / 4

self.hdrlen = self.fh.tell()

Example 19

def test_silence_frame_removal_given_hts_labels():

qs_file_name = join(DATA_DIR, "questions-radio_dnn_416.hed")

binary_dict, continuous_dict = hts.load_question_set(qs_file_name)

input_state_label = join(DATA_DIR, "label_state_align", "arctic_a0001.lab")

labels = hts.load(input_state_label)

features = fe.linguistic_features(labels,

binary_dict,

continuous_dict,

add_frame_features=True,

subphone_features="full"

)

# Remove silence frames

indices = labels.silence_frame_indices()

features = np.delete(features, indices, axis=0)

y = np.fromfile(join(DATA_DIR, "nn_no_silence_lab_425", "arctic_a0001.lab"),

dtype=np.float32).reshape(-1, features.shape[-1])

assert features.shape == y.shape

assert np.allclose(features, y)

# Make sure we can get same results with Merlin

Example 20

def test_linguistic_features_for_acoustic_model():

qs_file_name = join(DATA_DIR, "questions-radio_dnn_416.hed")

binary_dict, continuous_dict = hts.load_question_set(qs_file_name)

# Linguistic features

# To train acoustic model paired with linguistic features,

# we need frame-level linguistic feature representation.

input_state_label = join(DATA_DIR, "label_state_align", "arctic_a0001.lab")

labels = hts.load(input_state_label)

assert labels.is_state_alignment_label()

x = fe.linguistic_features(labels,

binary_dict,

continuous_dict,

add_frame_features=True,

subphone_features="full"

)

y = np.fromfile(join(DATA_DIR, "binary_label_425",

"arctic_a0001.lab"), dtype=np.float32).reshape(-1, x.shape[-1])

assert np.allclose(x, y)

Example 21

def read_array(self, dtype, count=-1, sep=""):

"""Return numpy array from file.

Work around numpy issue #2230, "numpy.fromfile does not accept

StringIO object" https://github.com/numpy/numpy/issues/2230.

"""

try:

return numpy.fromfile(self._fh, dtype, count, sep)

except IOError:

if count < 0:

size = self._size

else:

size = count * numpy.dtype(dtype).itemsize

data = self._fh.read(size)

return numpy.fromstring(data, dtype, count, sep)

Example 22

def test_file_position_after_fromfile(self):

# gh-4118

sizes = [io.DEFAULT_BUFFER_SIZE//8,

io.DEFAULT_BUFFER_SIZE,

io.DEFAULT_BUFFER_SIZE*8]

for size in sizes:

f = open(self.filename, 'wb')

f.seek(size-1)

f.write(b'\0')

f.close()

for mode in ['rb', 'r+b']:

err_msg = "%d %s" % (size, mode)

f = open(self.filename, mode)

f.read(2)

np.fromfile(f, dtype=np.float64, count=1)

pos = f.tell()

f.close()

assert_equal(pos, 10, err_msg=err_msg)

Example 23

def test_big_binary(self):

"""Test workarounds for 32-bit limited fwrite, fseek, and ftell

calls in windows. These normally would hang doing something like this.

See http://projects.scipy.org/numpy/ticket/1660"""

if sys.platform != 'win32':

return

try:

# before workarounds, only up to 2**32-1 worked

fourgbplus = 2**32 + 2**16

testbytes = np.arange(8, dtype=np.int8)

n = len(testbytes)

flike = tempfile.NamedTemporaryFile()

f = flike.file

np.tile(testbytes, fourgbplus // testbytes.nbytes).tofile(f)

flike.seek(0)

a = np.fromfile(f, dtype=np.int8)

flike.close()

assert_(len(a) == fourgbplus)

# check only start and end for speed:

assert_((a[:n] == testbytes).all())

assert_((a[-n:] == testbytes).all())

except (MemoryError, ValueError):

pass

Example 24

def load_mnist(data_dir):

fd = open(os.path.join(data_dir,'train-images-idx3-ubyte'))

loaded = np.fromfile(file=fd,dtype=np.uint8)

trX = loaded[16:].reshape((60000,np.prod(input_shape))).astype(float) / 255

fd = open(os.path.join(data_dir,'train-labels-idx1-ubyte'))

loaded = np.fromfile(file=fd,dtype=np.uint8)

trY = loaded[8:].reshape((60000))

fd = open(os.path.join(data_dir,'t10k-images-idx3-ubyte'))

loaded = np.fromfile(file=fd,dtype=np.uint8)

teX = loaded[16:].reshape((10000,np.prod(input_shape))).astype(float) / 255

fd = open(os.path.join(data_dir,'t10k-labels-idx1-ubyte'))

loaded = np.fromfile(file=fd,dtype=np.uint8)

teY = loaded[8:].reshape((10000))

trY = np.asarray(trY)

teY = np.asarray(teY)

return trX, teX, trY, teY

Example 25

def load_pfm(filepath, reverse = 1):

file = open(filepath, 'rb')

color = None

width = None

height = None

scale = None

endian = None

header = file.readline().rstrip()

color = (header == 'PF')

width, height = map(int, file.readline().strip().split(' '))

scale = float(file.readline().rstrip())

endian = ''

scale = abs(scale)

rawdata = np.fromfile(file, endian + 'f')

shape = (height, width, 3) if color else (height, width)

file.close()

if(color):

return rawdata.reshape(shape).astype(np.float32)[:,:,::-1]

else:

return rawdata.reshape(shape).astype(np.float32)

Example 26

def mnist():

fd = open(os.path.join(data_dir, 'train-images-idx3-ubyte'))

loaded = np.fromfile(file=fd, dtype=np.uint8)

trX = loaded[16:].reshape((60000, 28 * 28)).astype(float)

fd = open(os.path.join(data_dir, 'train-labels-idx1-ubyte'))

loaded = np.fromfile(file=fd, dtype=np.uint8)

trY = loaded[8:].reshape((60000))

fd = open(os.path.join(data_dir, 't10k-images-idx3-ubyte'))

loaded = np.fromfile(file=fd, dtype=np.uint8)

teX = loaded[16:].reshape((10000, 28 * 28)).astype(float)

fd = open(os.path.join(data_dir, 't10k-labels-idx1-ubyte'))

loaded = np.fromfile(file=fd, dtype=np.uint8)

teY = loaded[8:].reshape((10000))

trY = np.asarray(trY)

teY = np.asarray(teY)

return trX, teX, trY, teY

Example 27

def _holes_of_line(self, line=0):

try:

amount_of_holes, hole_id = self.hole_registry[line]

for i in range(amount_of_holes):

self.hole_coord_amount.seek(2 * hole_id)

nr_of_values = unpack(b'

self.hole_adr2data.seek(4 * hole_id)

self.hole_data.seek(unpack(b'

yield array([fromfile(self.hole_data, dtype='

fromfile(self.hole_data, dtype='

hole_id += 1

except KeyError:

return

Example 28

def readFile(self, filename):

'''

readFile(filename)

Reads a GDSII file and populate the library object

Parameters

----------

filename : string

Name of GDSII file

'''

if not isinstance(filename,str):

raise TypeError('GDSII_Library.readFile() : The filename must be a string')

if filename[-4:].lower() == '.gds':

filename = filename[:-4]

f = open(filename + '.gds','rb')

record = np.fromfile(f, dtype=np.uint8)

f.close()

self.readRecord(record)

Example 29

def create_bfcr(filename):

"""Creates a BFCR instance for a given file.

This helper function loads a label file and its corrosponding mgc file and

creates a bfcr file from them. The paths of both files are determined

automatically.

:params filename: filename from which the BFCR instaces are created

:returns: an instance of the BFCR class

"""

filename = os.path.splitext(os.path.basename(filename))[0]

label_file = LABEL_DIR + filename + '.lab'

mgc_file = MGC_DIR + filename + '.mgc'

mgc_matrix = np.fromfile(mgc_file, dtype=np.float32).reshape(-1, MGCORD+1)

bfcr = BFCR(label_file)

bfcr.encode_feature(mgc_matrix, 'mgc', NUM_BASES)

return bfcr

Example 30

def _load_original_matrix(self):

"""Loades the original mgc matrix for the test file.

This helper method loads the original matrix from the *.mgc file and

matrix for the test file and also computes the staring times of the

different phones.

:returns: the original mgc matrix

:returns: starting times of the phones

"""

mgc_matrix = np.fromfile(MGC_DIR + self._filename + '.mgc', dtype=np.float32).reshape(-1, MGCORD+1)

label = Label(LABEL_DIR + self._filename + '.lab')

step_size = mgc_matrix.shape[0]/label.last_phone_end

phone_starts = [int(round(p[1]*step_size)) for p in label.cur_phones_additions()]

return mgc_matrix, phone_starts

Example 31

def parse(self):

fname = self.fname.text()

if os.path.isfile(fname):

f = open(fname, "r")

else:

sys.stderr.write("Unable to open %s\n"%fname)

return

self.vol = np.fromfile(f, dtype='f8')

self.size = int(np.ceil(np.power(len(self.vol), 1./3.)))

self.vol = self.vol.reshape(self.size, self.size, self.size)

self.center = self.size/2

if not self.image_exists:

self.layer_slider.setRange(0, self.size-1)

self.layernum.setMaximum(self.size-1)

self.layer_slider.setValue(self.center)

self.layerslider_moved(self.center)

self.old_fname = fname

Example 32

def _parse_headers(self):

self.num_data_list = []

self.ones_accum_list = []

self.multi_accum_list = []

self.num_pix = []

for i, photons_file in enumerate(self.photons_list):

with open(photons_file, 'rb') as f:

num_data = np.fromfile(f, dtype='i4', count=1)[0]

self.num_pix.append(np.fromfile(f, dtype='i4', count=1)[0])

if self.num_pix[i] != len(self.geom_list[i].x):

sys.stderr.write('Warning: num_pix for %s is different (%d vs %d)\n' % (photons_file, self.num_pix[i], len(self.geom_list[i].x)))

f.seek(1024, 0)

ones = np.fromfile(f, dtype='i4', count=num_data)

multi = np.fromfile(f, dtype='i4', count=num_data)

self.num_data_list.append(num_data)

self.ones_accum_list.append(np.cumsum(ones))

self.multi_accum_list.append(np.cumsum(multi))

self.num_data_list = np.cumsum(self.num_data_list)

self.num_frames = self.num_data_list[-1]

Example 33

def get_fiedler_julia(mat, julia_path, julia_fiedler_script):

# Construct Laplacian

(iis, jjs, vvs) = find(mat)

n = mat.shape[0]

# add a random number to the filename to avoid inconsistent writes and reads with multiprocessing

randn = randrange(1000)

# write to csv

itempf = 'mat_coords_iis_%d_%d.csv' % (n, randn)

iis.tofile(itempf, sep=',')

jtempf = 'mat_coords_jjs_%d_%d.csv' % (n, randn)

jjs.tofile(jtempf, sep=',')

vtempf = 'mat_data.csv_%d_%d' % (n, randn)

vvs.tofile(vtempf, sep=',')

outf = 'temp_fidvec_%d_%d.csv' % (n, randn)

# call julia

cmd = [julia_path, julia_fiedler_script, itempf, jtempf, vtempf, outf]

subprocess.call(cmd)

# remove temporary files

os.remove(itempf)

os.remove(jtempf)

os.remove(vtempf)

# check output looks OK and return permutation

if os.path.exists(outf):

myperm = np.fromfile(outf, dtype=int, sep=',')

myperm = myperm - 1

os.remove(outf)

if (len(myperm) == mat.shape[0]):

return myperm

else:

return np.arange(n)

# output identity permutation if something went wrong

else:

return np.arange(n)

Example 34

def read_data(self, start=None, end=None):

"""read data from file and store it locally"""

nframe = self._find_nframe_from_file()

seek_to_data(self.file_object)

read_start = 0

end_read = nframe * self.nifs * self.nchans

if start is not None:

if start < 0:

read_start = (nframe + start) * self.nifs * self.nchans

elif start >= 0:

read_start = start * self.nifs * self.nchans

if end is not None:

if end < 0:

end_read = (nframe + end) * self.nifs * self.nchans

elif end >= 0:

end_read = end * self.nifs * self.nchans

self.file_object.seek(read_start, os.SEEK_CUR)

nbytes_to_read = end_read - read_start

data = np.fromfile(self.file_object, count=nbytes_to_read, dtype=self.dtype)

nframe = data.size // self.nifs // self.nchans

data = data.reshape((nframe, self.nifs, self.nchans))

if self.nbits < 8:

data = unpack(data, self.nbits)

self.data = data

return self.data

Example 35

def readheader(self):

self.fh.seek(0,0)

spam = self.fh.read(12)

self.nSamples, self.sampPeriod, self.sampSize, self.parmKind = \

unpack(">IIHH", spam)

# Get coefficients for compressed data

if self.parmKind & _C:

self.dtype = 'h'

self.veclen = self.sampSize / 2

if self.parmKind & 0x3f == IREFC:

self.A = 32767

self.B = 0

else:

self.A = numpy.fromfile(self.fh, 'f', self.veclen)

self.B = numpy.fromfile(self.fh, 'f', self.veclen)

if self.swap:

self.A = self.A.byteswap()

self.B = self.B.byteswap()

else:

self.dtype = 'f'

self.veclen = self.sampSize / 4

self.hdrlen = self.fh.tell()

self.veclen = int(self.veclen)

Example 36

def read_from_gnt_dir(gnt_dir=train_data_dir):

def one_file(f):

header_size = 10

while True:

header = np.fromfile(f, dtype='uint8', count=header_size)

if not header.size: break

sample_size = header[0] + (header[1]<<8) + (header[2]<<16) + (header[3]<<24)

tagcode = header[5] + (header[4]<<8)

width = header[6] + (header[7]<<8)

height = header[8] + (header[9]<<8)

if header_size + width*height != sample_size:

break

image = np.fromfile(f, dtype='uint8', count=width*height).reshape((height, width))

yield image, tagcode

for file_name in os.listdir(gnt_dir):

if file_name.endswith('.gnt'):

file_path = os.path.join(gnt_dir, file_name)

with open(file_path, 'rb') as f:

for image, tagcode in one_file(f):

yield image, tagcode

Example 37

def read_from_gnt_dir(gnt_dir=train_data_dir):

def one_file(f):

header_size = 10

while True:

header = np.fromfile(f, dtype='uint8', count=header_size)

if not header.size: break

sample_size = header[0] + (header[1]<<8) + (header[2]<<16) + (header[3]<<24)

tagcode = header[5] + (header[4]<<8)

width = header[6] + (header[7]<<8)

height = header[8] + (header[9]<<8)

if header_size + width*height != sample_size:

break

image = np.fromfile(f, dtype='uint8', count=width*height).reshape((height, width))

yield image, tagcode

for file_name in os.listdir(gnt_dir):

if file_name.endswith('.gnt'):

file_path = os.path.join(gnt_dir, file_name)

with open(file_path, 'rb') as f:

for image, tagcode in one_file(f):

yield image, tagcode

Example 38

def read_from_gnt_dir(gnt_dir=train_data_dir):

def one_file(f):

header_size = 10

while True:

header = np.fromfile(f, dtype='uint8', count=header_size)

if not header.size: break

sample_size = header[0] + (header[1]<<8) + (header[2]<<16) + (header[3]<<24)

tagcode = header[5] + (header[4]<<8)

width = header[6] + (header[7]<<8)

height = header[8] + (header[9]<<8)

if header_size + width*height != sample_size:

break

image = np.fromfile(f, dtype='uint8', count=width*height).reshape((height, width))

yield image, tagcode

for file_name in os.listdir(gnt_dir):

if file_name.endswith('.gnt'):

file_path = os.path.join(gnt_dir, file_name)

with open(file_path, 'rb') as f:

for image, tagcode in one_file(f):

yield image, tagcode

# ?????

Example 39

def get_embedding():

embedding_path = os.path.join(FLAGS.datasets_dir, "wordVectors.txt")

if not tf.gfile.Exists(embedding_path):

raise ValueError("embedding file not exists")

# embedding = np.fromfile(embedding_path, sep=' ')

# print("embedding size:", embedding.shape)

# print("embedding size:", embedding.dtype)

# embedding.reshape(100232, 50)

# print("embedding size:", embedding.shape)

data = np.fromfile(embedding_path, dtype=np.float32, sep=' ')

print("shape:", data.shape)

print("ndim:", data.ndim)

print("dtype:", data.dtype)

print(data)

print("reshape vocabulary")

d = data.reshape((-1, 50))

print("shape:", d.shape)

print("ndim:", d.ndim)

print("dtype:", d.dtype)

print(d)

return d

Example 40

def plot_conf_mat(densmap_name):

fig = plt.figure(figsize = (20,20))

plt.clf()

ax = fig.add_subplot(111)

#ax.set_aspect(1)

densmap = np.fromfile(densmap_name, np.float32)

densmap = densmap.reshape(227, 227)

densmap *= 100

densmap[densmap > 1] = 1

res = ax.imshow(densmap, cmap = plt.cm.jet,

interpolation = 'nearest')

plt.savefig('density.jpg')

img = cv2.imread("density.jpg")

img = cv2.resize(img, (227,227))

cv2.imshow("i", img)#

cv2.waitKey(0)

#plt.show()

Example 41

def load_mnist(self):

data_dir = os.path.join("./data", "mnist")

fd = open(os.path.join(data_dir, 'train-images-idx3-ubyte'))

loaded = np.fromfile(file=fd , dtype=np.uint8)

trX = loaded[16:].reshape((60000, 28 , 28 , 1)).astype(np.float)

fd = open(os.path.join(data_dir, 'train-labels-idx1-ubyte'))

loaded = np.fromfile(file=fd, dtype=np.uint8)

trY = loaded[8:].reshape((60000)).astype(np.float)

fd = open(os.path.join(data_dir, 't10k-images-idx3-ubyte'))

loaded = np.fromfile(file=fd, dtype=np.uint8)

teX = loaded[16:].reshape((10000, 28 , 28 , 1)).astype(np.float)

fd = open(os.path.join(data_dir, 't10k-labels-idx1-ubyte'))

loaded = np.fromfile(file=fd, dtype=np.uint8)

teY = loaded[8:].reshape((10000)).astype(np.float)

trY = np.asarray(trY)

teY = np.asarray(teY)

X = np.concatenate((trX, teX), axis=0)

y = np.concatenate((trY, teY), axis=0)

seed = 547

np.random.seed(seed)

np.random.shuffle(X)

np.random.seed(seed)

np.random.shuffle(y)

#convert label to one-hot

y_vec = np.zeros((len(y), 10), dtype=np.float)

for i, label in enumerate(y):

y_vec[i, int(y[i])] = 1.0

return X / 255. , y_vec

Example 42

def unpack(stream):

base = stream.tell()

header = Header.unpack(stream)

influence_groups = [None]*header.influence_group_count

inverse_bind_matrices = None

stream.seek(base + header.influence_count_offset)

for i in range(header.influence_group_count):

influence_count = uint8.unpack(stream)

influence_groups[i] = [Influence(None,None) for _ in range(influence_count)]

stream.seek(base + header.index_offset)

for influence_group in influence_groups:

for influence in influence_group:

influence.index = uint16.unpack(stream)

stream.seek(base + header.weight_offset)

for influence_group in influence_groups:

for influence in influence_group:

influence.weight = float32.unpack(stream)

if header.inverse_bind_matrix_offset != 0:

stream.seek(base + header.inverse_bind_matrix_offset)

element_type = numpy.dtype((numpy.float32,(3,4))).newbyteorder('>')

element_count = (header.section_size - header.inverse_bind_matrix_offset)//element_type.itemsize

inverse_bind_matrices = numpy.fromfile(stream,element_type,element_count)

stream.seek(base + header.section_size)

return influence_groups,inverse_bind_matrices

Example 43

def unpack_array(stream,attribute_format,size):

if attribute_format.attribute == gx.VA_POS:

component_type = gx.ComponentType(attribute_format.component_type)

component_count = gx.PositionComponentCount(attribute_format.component_count)

array_type = Array

elif attribute_format.attribute == gx.VA_NRM:

component_type = gx.ComponentType(attribute_format.component_type)

component_count = gx.NormalComponentCount(attribute_format.component_count)

array_type = Array

elif attribute_format.attribute in gx.VA_CLR:

component_type = gx.ColorComponentType(attribute_format.component_type)

component_count = gx.ColorComponentCount(attribute_format.component_count)

array_type = ColorArray

elif attribute_format.attribute in gx.VA_TEX:

component_type = gx.ComponentType(attribute_format.component_type)

component_count = gx.TexCoordComponentCount(attribute_format.component_count)

array_type = Array

else:

raise FormatError('invalid vertex attribute')

element_type = array_type.create_element_type(component_type,component_count)

element_count = size//element_type.itemsize

array = numpy.fromfile(stream,element_type,element_count).view(array_type)

array.attribute = attribute_format.attribute

array.component_type = component_type

array.component_count = component_count

array.scale_exponent = attribute_format.scale_exponent

return array

Example 44

def _read_bin(self, stream, byte_order):

'''

Read data from a binary stream. Raise StopIteration if the

property could not be read.

'''

try:

return _np.fromfile(stream, self.dtype(byte_order), 1)[0]

except IndexError:

raise StopIteration

Example 45

def _read_bin(self, stream, byte_order):

(len_t, val_t) = self.list_dtype(byte_order)

try:

n = _np.fromfile(stream, len_t, 1)[0]

except IndexError:

raise StopIteration

data = _np.fromfile(stream, val_t, n)

if len(data) < n:

raise StopIteration

return data

Example 46

def convert_f0(f0, src, trg):

mu_s, std_s = np.fromfile(os.path.join('./etc', '{}.npf'.format(src)), np.float32)

mu_t, std_t = np.fromfile(os.path.join('./etc', '{}.npf'.format(trg)), np.float32)

lf0 = tf.where(f0 > 1., tf.log(f0), f0)

lf0 = tf.where(lf0 > 1., (lf0 - mu_s)/std_s * std_t + mu_t, lf0)

lf0 = tf.where(lf0 > 1., tf.exp(lf0), lf0)

return lf0

Example 47

def test():

# ==== Test: batch mixer (conclusion: capacity should be larger to make sure good mixing) ====

x, y = read('./dataset/vcc2016/bin/*/*/1*001.bin', 32, min_after_dequeue=1024, capacity=2048)

sv = tf.train.Supervisor()

with sv.managed_session() as sess:

for _ in range(200):

x_, y_ = sess.run([x, y])

print(y_)

# ===== Read binary ====

features = read_whole_features('./dataset/vcc2016/bin/Training Set/SF1/*001.bin')

sv = tf.train.Supervisor()

with sv.managed_session() as sess:

features = sess.run(features)

y = pw2wav(features)

sf.write('test1.wav', y, 16000) # TODO fs should be specified externally.

# ==== Direct read =====

f = './dataset/vcc2016/bin/Training Set/SF1/100001.bin'

features = np.fromfile(f, np.float32)

features = np.reshape(features, [-1, 513*2 + 1 + 1 + 1]) # f0, en, spk

y = pw2wav(features)

sf.write('test2.wav', y, 16000)

Example 48

def read_float64_as_float32(filename):

x = np.fromfile(filename, np.float64)

return x.astype(np.float32)

Example 49

def main():

''' NOTE: The input is rescaled to [-1, 1] '''

dirs = validate_log_dirs(args)

tf.gfile.MakeDirs(dirs['logdir'])

with open(args.architecture) as f:

arch = json.load(f)

with open(os.path.join(dirs['logdir'], args.architecture), 'w') as f:

json.dump(arch, f, indent=4)

normalizer = Tanhize(

xmax=np.fromfile('./etc/xmax.npf'),

xmin=np.fromfile('./etc/xmin.npf'),

)

image, label = read(

file_pattern=arch['training']['datadir'],

batch_size=arch['training']['batch_size'],

capacity=2048,

min_after_dequeue=1024,

normalizer=normalizer,

)

machine = MODEL(arch)

loss = machine.loss(image, label)

trainer = TRAINER(loss, arch, args, dirs)

trainer.train(nIter=arch['training']['max_iter'], machine=machine)

Example 50

def _read_bin(self, stream, byte_order):

'''

Read data from a binary stream.

'''

return _np.fromfile(stream, self.dtype(byte_order), 1)[0]