决策树的value是什么意思_决策树(Decision Tree):通俗易懂之介绍

决策树是一种机器学习的方法。决策树的生成算法有ID3, C4.5和C5.0等。决策树是一种树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果。

决策树是一种十分常用的分类方法,需要监管学习(有教师的Supervised Learning),监管学习就是给出一堆样本,每个样本都有一组属性和一个分类结果,也就是分类结果已知,那么通过学习这些样本得到一个决策树,这个决策树能够对新的数据给出正确的分类。这里通过一个简单的例子来说明决策树的构成思路:

给出如下的一组数据,一共有十个样本(学生数量),每个样本有分数,出勤率,回答问题次数,作业提交率四个属性,最后判断这些学生是否是好学生。最后一列给出了人工分类结果。

c35403146fadbd7fb78742716e116be0.png

然后用这一组附带分类结果的样本可以训练出多种多样的决策树,这里为了简化过程,我们假设决策树为二叉树,且类似于下图:

1db3b496381f3bfe29eab2db40d1affe.png

通过学习上表的数据