使用 tensorflow.keras 接口,组装神经网络层次,训练并预测
import tensorflow as tf
from tensorflow.keras.datasets import mnist
import os
class Classifier:
def __init__(self) -> None:
self.x_train = None
self.x_test = None
self.model_file = '/tmp/tensor.keras.model'
self.has_load = False
self.has_model_load = False
def load_or_train(self):
if self.has_load:
return {'err': 0}
try:
if os.path.exists(self.model_file):
self.__load_model()
else:
self.__train_model()
self.has_load = True
return {'err': 0}
except Exception as e:
return {'err': 1, 'msg': str(e)}
def __create_model(self):
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(
optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
return model
def __train_model(self):
if self.has_model_load:
return
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
self.model = self.__create_model()
self.model.fit(x_train, y_train, epochs=5)
self.model.evaluate(x_test, y_test, verbose=2)
self.model.save(self.model_file)
self.has_model_load = True
def __load_model(self):
if self.has_model_load:
return
self.model = tf.keras.models.load_model(self.model_file)
self.model.summary()
self.has_model_load = True
def predict(self, test_images):
if not self.has_load:
return {'err': 1, 'msg': "分类器还没加载"}
result = self.model.predict(test_images)
return {'err': 0, 'result': result}
if __name__ == "__main__":
cl = Classifier()
# 加载或训练模型
ret = cl.load_or_train()
if ret['err'] != 0:
print(ret['msg'])
else:
# 测试数据
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0
# 预测
ret = cl.predict(test_images)
if ret['err'] == 0:
print('预测结果:', ret['result'])
else:
print('预测失败:{}', ret['msg'])
版权声明:本文为JishuFengyang原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。