第一种, np矩阵可以直接与标量运算
>>>import numpy as np
>>>arr1 = np.arange(12).reshape([2,2,3])
>>>arr1
array([[[ 0, 1, 2],
[ 3, 4, 5]],
[[ 6, 7, 8],
[ 9, 10, 11]]])
>>>arr1*5
array([[[ 0, 5, 10],
[15, 20, 25]],
[[30, 35, 40],
[45, 50, 55]]])
>>>arr1-5
array([[[-5, -4, -3],
[-2, -1, 0]],
[[ 1, 2, 3],
[ 4, 5, 6]]])
>>>arr1**2
array([[[ 0, 1, 4],
[ 9, 16, 25]],
[[ 36, 49, 64],
[ 81, 100, 121]]])
第二种,若arr1是高维数组,如果arr2的维度与arr1某个子数组维度相同,那么可以相互作运算。
PyDev console: starting.
Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 16:52:21)
[Clang 6.0 (clang-600.0.57)] on darwin
>>>import numpy as np
>>>arr1 = np.arange(12).reshape([2,2,3])
>>>arr1
array([[[ 0, 1, 2],
[ 3, 4, 5]],
[[ 6, 7, 8],
[ 9, 10, 11]]])
>>>arr2 = np.array([2,2,2])
>>>arr2
array([2, 2, 2])
>>>arr1*arr2
array([[[ 0, 2, 4],
[ 6, 8, 10]],
[[12, 14, 16],
[18, 20, 22]]])
>>>arr3 = np.arange(6).reshape([2,3])
>>>arr1*arr3
array([[[ 0, 1, 4],
[ 9, 16, 25]],
[[ 0, 7, 16],
[27, 40, 55]]])
版权声明:本文为weixin_43941834原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。