一、算法原理
1、概述
随机抽样一致性算法RANSAC(Random sample consensus)是一种迭代的方法来从一系列包含有离异值的数据中计算数学模型参数的方法。
RANSAC算法本质上由两步组成,不断进行循环:
(1)从输入数据中随机选出能组成数学模型的最小数目的元素,使用这些元素计算出相应模型的参数。选出的这些元素数目是能决定模型参数的最少的。
(2)检查所有数据中有哪些元素能符合第一步得到的模型。超过错误阈值的元素认为是离群值(outlier),小于错误阈值的元素认为是内部点(inlier
版权声明:本文为qq_36686437原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。