《机器学习第三章 决策树 实践》

trees.py文件代码:

from math import log
import operator
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties


def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet: #the the number of unique elements and their occurance
        currentLabel = featVec[-1]#取出这一行的最后一个值,即类别yes or no
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0#如果没有这个键,就增加一个键值为零
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries#p(xi)
        shannonEnt -= prob * log(prob,2) #log base 2  -p(xi)*log(p(xi))
    return shannonEnt


#创建测试数据
def createDataSet():
    dataSet = [[1, 1, 'yes'],
               [1, 1, 'yes'],
               [1, 0, 'no'],
               [0, 1, 'no'],
               [0, 1, 'no']]
    labels = ['no surfacing','flippers']
    #change to discrete values
    return dataSet, labels

myDat,labels = createDataSet()
##print(calcShannonEnt(myDat))

##def createDataSet():
##    dataSet = [[1, 1, 'maybe'],
##               [1, 1, 'yes'],
##               [1, 0, 'no'],
##               [0, 1, 'no'],
##               [0, 1, 'no']]
##    labels = ['no surfacing','flippers']
##    #change to discrete values
##    return dataSet, labels
##
##myDat,labels = createDataSet()
##print(calcShannonEnt(myDat))

def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis] #chop out axis used for splitting
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet


##print(splitDataSet(myDat,0,1))
##print(splitDataSet(myDat,0,0))


def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1      #the last column is used for the labels
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numFeatures):        #iterate over all the features
        featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
        uniqueVals = set(featList)       #get a set of unique values
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)     
        infoGain = baseEntropy - newEntropy     #calculate the info gain; ie reduction in entropy
        if (infoGain > bestInfoGain):       #compare this to the best gain so far
            bestInfoGain = infoGain         #if better than current best, set to best
            bestFeature = i
    return bestFeature                      #returns an integer


##print(chooseBestFeatureToSplit(myDat))


def majorityCnt(classList):
    classCount={}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]


def createTree(dataSet,labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList): 
        return classList[0]#stop splitting when all of the classes are equal
    if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labels
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
    return myTree                 


myTree = createTree(myDat,labels)
labels.insert(0,'no surfacing')#在myTree产生的过程中删除了'no surfacing',这里要插入进来
##print(labels)
##print(myTree)


def classify(inputTree, featLabels, testVec):
    firstStr = next(iter(inputTree))    #获取决策树结点
    secondDict = inputTree[firstStr]    #下一个字典
    featIndex = featLabels.index(firstStr)
    for key in secondDict.keys():
        if testVec[featIndex] == key:
            if type(secondDict[key]).__name__ == 'dict':
                classLabel = classify(secondDict[key], featLabels, testVec)
            else: classLabel = secondDict[key]
    return classLabel
    

decisionNode = dict(boxstyle = 'sawtooth',fc = '0.8')
leafNode = dict(boxstyle = 'round4',fc = '0.8')
arrow_args = dict(arrowstyle = '<-')

def plotNode(nodeTxt,centerPt,parentPt,nodeType):
    font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)
    createPlot.ax1.annotate(nodeTxt,xy = parentPt,xycoords = 'axes fraction',
                           xytext = centerPt,textcoords = 'axes fraction',
                           va = 'center',ha = 'center',bbox = nodeType,
                           arrowprops = arrow_args,FontProperties=font)

##print(classify(myTree,labels,[1,0]))
##print(classify(myTree,labels,[1,1]))


def storeTree(inputTree,filename):
    import pickle
    fw = open(filename,'wb')
    pickle.dump(inputTree,fw)
    fw.close()
    
def grabTree(filename):
    import pickle
    fr = open(filename,'rb')
    return pickle.load(fr)

##storeTree(myTree,'classifierStorage.pk')
##print(grabTree('classifierStorage.pk'))

def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            numLeafs += getNumLeafs(secondDict[key])
        else:
            numLeafs += 1
    return numLeafs


def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:
            thisDepth = 1
        if thisDepth > maxDepth:
            maxDepth = thisDepth
    return maxDepth


def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)




def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on
    numLeafs = getNumLeafs(myTree)  #this determines the x width of this tree
    depth = getTreeDepth(myTree)
    firstStr = list(myTree.keys())[0]     #the text label for this node should be this
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes   
            plotTree(secondDict[key],cntrPt,str(key))        #recursion
        else:   #it's a leaf node print the leaf node
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
#if you do get a dictonary you know it's a tree, and the first element will be another dict


def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    #no ticks
    #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5/plotTree.totalW
    plotTree.yOff = 1.0
    plotTree(inTree, (0.5,1.0), '')
    plt.show()

fr = open('lenses.txt')
lenses = [inst.strip().split('\t') for inst in fr.readlines()]
lensesLabels = ['age','prescript','astigmatic','tearRate']
lensesTree = createTree(lenses,lensesLabels)
print(lensesTree)
createPlot(lensesTree)

treePlotter.py文件代码:

import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties


decisionNode = dict(boxstyle = 'sawtooth',fc = '0.8')
leafNode = dict(boxstyle = 'round4',fc = '0.8')
arrow_args = dict(arrowstyle = '<-')

def plotNode(nodeTxt,centerPt,parentPt,nodeType):
    font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)
    createPlot.ax1.annotate(nodeTxt,xy = parentPt,xycoords = 'axes fraction',
                           xytext = centerPt,textcoords = 'axes fraction',
                           va = 'center',ha = 'center',bbox = nodeType,
                           arrowprops = arrow_args,FontProperties=font)
##def createPlot():
##    fig = plt.figure(1,facecolor = 'white')
##    fig.clf()
##    createPlot.ax1 = plt.subplot(111,frameon = False)
##    plotNode('决策节点',(0.5,0.1),(0.1,0.5),decisionNode)
##    plotNode('叶节点',(0.8,0.1),(0.3,0.8),leafNode)
##    plt.show()


##createPlot()


##import matplotlib.pyplot as plt
##from matplotlib.font_manager import FontProperties
##
##decisionNode=dict(boxstyle="sawtooth",fc="0.8")
##leafNode=dict(boxstyle="round4",fc="0.8")
##
##def plotNode(nodeTxt,centerPt,parentPt,nodeType):
##    arrow_args=dict(arrowstyle="<-")#定义箭头格式
##    font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)#设置中文字体
##    #绘制结点
##    createPlot.ax1.annotate(nodeTxt,xy=parentPt,xycoords='axes fraction',
##                          xytext=centerPt,textcoords='axes fraction',
##                         va="center",ha="center",bbox=nodeType,
##                            arrowprops=arrow_args, FontProperties=font)
##
##def createPlot():
##    fig=plt.figure(1,facecolor='white')#创建fig
##    fig.clf()#清空fig
##    createPlot.ax1=plt.subplot(111, frameon=False)#去掉x、y轴
##    plotNode('决策节点',(0.5,0.1),(0.1,0.5),decisionNode)
##    plotNode('叶子节点',(0.8,0.1),(0.3,0.8),leafNode)
##    plt.show()
##
##
##createPlot()


def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            numLeafs += getNumLeafs(secondDict[key])
        else:
            numLeafs += 1
    return numLeafs


def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:
            thisDepth = 1
        if thisDepth > maxDepth:
            maxDepth = thisDepth
    return maxDepth


def retrieveTree(i):
    listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
                  {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
                  ]
    return listOfTrees[i]

##print(retrieveTree(0))
##print(getNumLeafs(retrieveTree(0)))
##print(getTreeDepth(retrieveTree(0)))

def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)


def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on
    numLeafs = getNumLeafs(myTree)  #this determines the x width of this tree
    depth = getTreeDepth(myTree)
    firstStr = list(myTree.keys())[0]     #the text label for this node should be this
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes   
            plotTree(secondDict[key],cntrPt,str(key))        #recursion
        else:   #it's a leaf node print the leaf node
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
#if you do get a dictonary you know it's a tree, and the first element will be another dict

def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    #no ticks
    #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5/plotTree.totalW
    plotTree.yOff = 1.0
    plotTree(inTree, (0.5,1.0), '')
    plt.show()

myTree = retrieveTree(0)
##createPlot(myTree)

##myTree['no surfacing'][3] = 'maybe'
##createPlot(myTree)



版权声明:本文为weixin_43955530原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。