from keras.models import load_model
import numpy as np
from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score,accuracy_score
y_predict = model.predict(test_images, batch_size=512, verbose=1)
y_predict = (y_predict > 0.01).astype(int)
y_true = np.reshape(test_labels, [-1])
y_pred = np.reshape(y_predict, [-1])
accuracy = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred, average='binary')
f1score = f1_score(y_true, y_pred, average='binary')
micro_f1 = f1_score(y_true, y_pred,average='micro')
macro_f1 = f1_score(y_true, y_pred,average='macro')
print('accuracy:',accuracy)
print('precision:',precision)
print('recall:',recall)
print('f1score:',f1score)
print('Macro-F1: {}'.format(macro_f1))
print('Micro-F1: {}'.format(micro_f1))