HashMap源码分析记录(JDK8)

HashMap源码分析记录

HashMap继承了AbstractMap,并实现了Map接口、Cloneable, Serializable接口,作为Map键值对稽核体系中最常用的一个实现类,允许空键和空值,不允许键重复,允许值重复,非线程安全。
public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable {
}
* HashMap的数据结构:HashMap底层数据结构为可存储链表或树的Entry对象数组,存储键值对时,会对传入的键进行hash运算,得到一个hash值,以此得到该键值对(Entry对象,在HashMap中是用其子类Node(K,V)存储)存在对象数组的哪个索引位置,当传入的键值对的Key计算出的hash值与对象数组中某个索引位置的键值对的Key的hash值相同,即为hash冲突,发生hash冲突后,HashMap会将后面的键值对以链表的形式加入到原有元素的后面,当链表长度达到8并且对象数组容量达到64时,会将链表结构转换为树结构,以提高查找的性能。当链表长度小于等于6时,又会将树结构转为链表结构。

1、成员变量

a、序列化Id:private static final long serialVersionUID = 362498820763181265L;

  private static final long serialVersionUID = 362498820763181265L;

b、默认初始容量DEFAULT_INITIAL_CAPACITY

 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

默认的初始容量为[16]

c、最大容量MAXIMUM_CAPACITY

  static final int MAXIMUM_CAPACITY = 1 << 30;

最大容量限制为2^30

d、默认的负载系数DEFAULT_LOAD_FACTOR

 static final float DEFAULT_LOAD_FACTOR = 0.75f;

默认的负载系数为0.75,当Map中键值对个数大于当前容量的0.75时会进行扩容

e、当hash冲突时存储的键值对由链表转换为树结构的判断条件之一TREEIFY_THRESHOLD

 static final int TREEIFY_THRESHOLD = 8;

f、由树结构转为链表结构的阀值UNTREEIFY_THRESHOLD

 static final int UNTREEIFY_THRESHOLD = 6;

g、链表结构转换为树结构的判断条件之一MIN_TREEIFY_CAPACITY

static final int MIN_TREEIFY_CAPACITY = 64;

当数组容量大于64且数组中的链表节点大于8时会将链表结构转换为树结构,否则只会扩容

h、存储键值对的对象数组table

 transient Node<K,V>[] table;

i、缓存键对象和值对象的Set集合entrySet

 transient Set<Map.Entry<K,V>> entrySet;

j、Map中存储的键值对对象数size

transient int size;

k、修改因子modCount,每次修改(添加、删除、移动、扩容、重新hash等)都会自增,用于实现fast-fail机制

 transient int modCount;

l、扩容阀值int threshold;是容量*负载系数的值,当容量达到大于该值时,会进行扩容并设置新的阀值

int threshold;

m、负载因子final float loadFactor;

 final float loadFactor;

2、内部类

a、存储键值对的类Node<K,V>

//该类实现了Map接口的内部类Entry
static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
    //存储下一个链表或树节点的地址
        Node<K,V> next;
		//构造一个键值对的节点对象
        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }
	//修改键值对的V值
        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

b、获取Map的Key对象的类KeySet

 final class KeySet extends AbstractSet<K> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<K> iterator()     { return new KeyIterator(); }
        public final boolean contains(Object o) { return containsKey(o); }
        public final boolean remove(Object key) {
            return removeNode(hash(key), key, null, false, true) != null;
        }
        public final Spliterator<K> spliterator() {
            return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super K> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.key);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

c、获取Key、Value值映射对象的类EntrySet

 final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<Map.Entry<K,V>> iterator() {
            return new EntryIterator();
        }
        public final boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>) o;
            Object key = e.getKey();
            Node<K,V> candidate = getNode(hash(key), key);
            return candidate != null && candidate.equals(e);
        }
        public final boolean remove(Object o) {
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
                Object key = e.getKey();
                Object value = e.getValue();
                return removeNode(hash(key), key, value, true, true) != null;
            }
            return false;
        }
        public final Spliterator<Map.Entry<K,V>> spliterator() {
            return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

3、构造方法

a、构造一个指定容量及负载系数的HashMap:public HashMap(int initialCapacity, float loadFactor)

public HashMap(int initialCapacity, float loadFactor) {
    //传入的参数为容量及负载因子
    //判断参数的合法性
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
    //将传入的负载因子赋值给成员变量里的loadFactor
        this.loadFactor = loadFactor;
    //计算扩容阀值
        this.threshold = tableSizeFor(initialCapacity);
    }

b、构造一个指定容量的HashMap实例public HashMap(int initialCapacity)

 public HashMap(int initialCapacity) {
     //直接调用上面的方法,并将负载因子设置为默认的0.75
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

c、构造一个HashMap实例public HashMap()

public HashMap() {
    //使用默认负载因子
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

d、构造一个包含指定Map的HashMap实例public HashMap(Map<? extends K, ? extends V> m)

public HashMap(Map<? extends K, ? extends V> m) {
    //使用默认负载因子
        this.loadFactor = DEFAULT_LOAD_FACTOR;
    //调用存放Map集合的方法将传入的集合添加到HashMap中
        putMapEntries(m, false);
    }

4、成员方法

a、计算hash散列的方法hash()

static final int hash(Object key) {
        int h;
    //根据传入的键运用位运算来获取冲突小的hash散列值并返回
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

b、扩容方法tableSizeFor

 static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

得到传入的参数的两倍并返回

c、将传入的Map放到HashMap中 putMapEntries(Map<? extends K, ? extends V> m, boolean evict)

 final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            //如果HashMap为空,则计算扩容阀值
            if (table == null) { // pre-size
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                         (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    //调用阀值计算方法并将返回值赋值给内置的扩容阀值
                    threshold = tableSizeFor(t);
            }
            //原HashMap不为空,传入的集合size大于扩容阀值,则进行扩容
            else if (s > threshold)
                resize();
            //遍历传入的集合,并将键值对放入原HashMap中
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

d、返回映射中的键值对数public int size()

 public int size() {
        return size;
    }

e、判断HashMap是否为空public boolean isEmpty()

public boolean isEmpty() {
        return size == 0;
    }

f、根据键获取值get(K key)

  public V get(Object key) {
        Node<K,V> e;
      //获取值
      //先获取Node数组的值,判断是否为空,为空返回null,不为空返回value
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
//获取Node数组中元素的方法
 final Node<K,V> getNode(int hash, Object key) {
     //定义变量
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
     //判断条件:Node键值对数组不为空,数组的length大于0,根据n-1&hash与运算得到的数组索引的值不为空
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            //判断传入的键的映射是否存在,存在就返回
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            //如果键值对链表有值(非空)
            if ((e = first.next) != null) {
                //是否为树结构,调用树结构获取节点元素的方法拿到元素并返回
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                //否则该节点就是链表结构,对链表进行循环,找到与传入的键对应的元素并返回
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
     //都没有则返回null
        return null;
    }

g、判断HashMap是否包含传入的键对应的映射public boolean containsKey(Object key)

 public boolean containsKey(Object key) {
     //调用此方法并判断非空才返回ture
        return getNode(hash(key), key) != null;
    }

h、将键值对放入HashMap中public V put(K key, V value),如果key在HashMap中已存在,则会覆盖该键所对应的value值

 public V put(K key, V value) {
     //调用方法
        return putVal(hash(key), key, value, false, true);
    }

//将键值对放入HashMap的Node数组中的方法
 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
     //判断Node数组是否为空,为空则进行初始化扩容
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
     //根据与运算得到的索引位置为空,则新建一个Node对象,放入该位置
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            //索引位置不为空
            Node<K,V> e; K k;
            //键相同
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                
                e = p;
            //如果Node数组为树结构,则将该键值对放到树结构中
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                //为链表结构,则循环
                for (int binCount = 0; ; ++binCount) {
                    //Node节点的下一个节点为空,则将传入的键值对放入
                    if ((e = p.next) == null) {
                        //新增节点
                        p.next = newNode(hash, key, value, null);
                        //如果链表长度大于等于树结构转换阀值,即8,则将对是否转换为树结构进行判断
                        //如果Node数组的容量小于等于64,则不转换,否则将链表转换为树结构
                        //binCount为链表的索引,当binCount大于等于7时,即链表的元素个数达到了8个及以						上,会进行转换为树结构的判断
                        //在进行binCount判断时,新节点实际已经加入链表了,比如binCount为7,链表有8个						节点,执行到这里时实际上链表中已有9个节点了
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    //如果链表中有相同的key,则进行跳出循环,替换value
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    //如果键已存在,则替换值
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
     //如果传入键值对后的元素个数大于扩容阀值,则会扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

i、扩容方法final Node<K,V>[] resize(),返回Node键值对数组

 final Node<K,V>[] resize() {
     //将原数组定义为oldTab
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //新容量为原容量左移1位,即为原来的2倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                //新的扩容阀值也为原扩容阀值的2倍(左移1位)
                newThr = oldThr << 1; // double threshold
        }
     //如果原容量为0(即首次添加元素)
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            //将容量设置为默认容量16
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
     //将新的阀值赋值给原阀值
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
     //新建一个包含新容量大小的键值对数组并赋值给原数组
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
     //原数组不为空
        if (oldTab != null) {
            //遍历数组的元素
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                   //原数组的元素置为空
                    oldTab[j] = null;
                    if (e.next == null)
                        //如果元素位置没有链表,则直接将新数组的索引位置放置原数组的元素
                       //新数组的元素的index的计算方法为元素的hash属性与上新容量-1得到index
                        newTab[e.hash & (newCap - 1)] = e;
                    //如果该Node上是树结构,则会重新对结构进行判断,新容量大于64且元素个数大于等于8,则						还是采用树结构存储,否则转换为链表
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    //否则存储的元素为链表,将链表的数据放到新数组中
                    else { // preserve order
                      
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        //遍历链表
                        do {
                            //将e.next赋给next变量
                            next = e.next;
                            //通过与运算惊喜判定该元素是在链表的低位还是高位
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    //指定低位链表的头结点
                                    loHead = e;
                                else
                                    loTail.next = e;
                                //指定尾节点
                                loTail = e;
                            }
                            //高位
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                            //while条件里相当于e = e.next,元素进行了迭代
                        } while ((e = next) != null);
                        //上面的循环遍历链表生成了两条新的链表,低位链表和高位链表
                        if (loTail != null) {
                            //低位链表的尾节点不为空,则将其next节点置空
                            loTail.next = null;
                            //将低位链表的头结点放入新数组的索引位置处
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                             //高位链表的尾节点不为空,则将其next节点置空
                            hiTail.next = null;
                            //将高位链表的头结点放入新数组的索引+原数组容量的位置处
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }


//红黑树扩容
//参数:map:旧数组,tab:新数组,index:当前遍历到的数组元素的索引,bit:原数组的长度
 final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
     //保存当前元素为b
            TreeNode<K,V> b = this;
            // Relink into lo and hi lists, preserving order
     //定义高位低位节点
            TreeNode<K,V> loHead = null, loTail = null;
            TreeNode<K,V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
     //遍历红黑树
            for (TreeNode<K,V> e = b, next; e != null; e = next) {
                next = (TreeNode<K,V>)e.next;
                e.next = null;
                //通过运算得到高位低位的链表
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    //得到的低位链表的元素个数
                    ++lc;
                }
                else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    //高位链表的元素个数
                    ++hc;
                }
            }
    //遍历完成之后,此时树的结构并没有发生改变

     //判断低位的头节点
            if (loHead != null) {
                //如果低位链表的元素个数小于等于6
                if (lc <= UNTREEIFY_THRESHOLD)
                    //则会将该链表退化为链表结构,并将头节点移到新数组的与旧数组相同的位置
                    tab[index] = loHead.untreeify(map);
                else {
                    //不退化的情况,将低位链表的头节点放到新数组与原来数组的位置相同的位置
                    tab[index] = loHead;
                    //如果高位链表的头节点不为空,则要将低位链表重新树化
                    if (hiHead != null) // (else is already treeified)
                        loHead.treeify(tab);
                }
            }
            if (hiHead != null) {
                //如果高位链表的元素个数小于等于6
                if (hc <= UNTREEIFY_THRESHOLD)
                    //则会将该链表退化为链表结构,并将头节点移到新数组中索引为原索引+旧数组容量的位置
                    tab[index + bit] = hiHead.untreeify(map);
                else {
                    //不退化的情况
                    tab[index + bit] = hiHead;
                    if (loHead != null)
                        //如果低位链表的头节点不为空,则要将高位链表重新树化
                        hiHead.treeify(tab);
                }
            }
        }

j、hash冲突时链表与树结构转换的判断方法final void treeifyBin(Node<K,V>[] tab, int hash)

final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
 		//判断数组的容量是否大于等于64
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            //小于64,则进行扩容
            resize();
    //否则进行树化转换
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            //将链表转换为TreeNode类型的双向链表
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    //双向链表的第一个节点
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }


//树化的具体
 final void treeify(Node<K,V>[] tab) {
            TreeNode<K,V> root = null;
     //遍历循环双向链表,将链表的第一个元素设为红黑树的root节点
            for (TreeNode<K,V> x = this, next; x != null; x = next) {
                next = (TreeNode<K,V>)x.next;
                x.left = x.right = null;
                if (root == null) {
                    x.parent = null;
                    x.red = false;
                    root = x;
                }
                else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    for (TreeNode<K,V> p = root;;) {
                        int dir, ph;
                        K pk = p.key;
                        //比较新插入节点与已插入节点的hash值
                        if ((ph = p.hash) > h)
                            dir = -1;
                        else if (ph < h)
                            dir = 1;
                        //hash值相等的情况
                        else if ((kc == null &&
                                  //判断插入的元素的key值是否实现了Comparable接口,实现了则返回key									的class对象,否则返回null
                                  (kc = comparableClassFor(k)) == null) ||
                                 //比较新插入的元素的key与原有元素的key的大小
                                 (dir = compareComparables(kc, k, pk)) == 0)
                            //调用原生默认的hashcode方法对元素进行比较,获得dir值
                            dir = tieBreakOrder(k, pk);

                        TreeNode<K,V> xp = p;
                        //dir值小于等于0,走左边,大于0,走右边,如果左子树或右子树为空
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                           //设置新插入的节点的父节点
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                            //调用方法调整红黑树
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
     //将红黑树的根节点设为tab数组的元素,并且将root原来在双向链表中的位置设为头节点(转为红黑树的过程中双		向链表的prev和next属性未发生该变)
            moveRootToFront(tab, root);
        }

static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
            int n;
            if (root != null && tab != null && (n = tab.length) > 0) {
               
                int index = (n - 1) & root.hash;
                 //获取根据root元素的hash值算出的index位置的元素
                TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
                //得到的元素如果不是root对象,进行调整
                if (root != first) {
                    Node<K,V> rn;
                    //将数组的index位置设为root
                    tab[index] = root;
                    //root对象在双向链表中的前节点
                    TreeNode<K,V> rp = root.prev;
                    //root对象在双向链表中的后节点不为空
                    if ((rn = root.next) != null)
                        //将root对象的前节点设为后节点的前节点
                        ((TreeNode<K,V>)rn).prev = rp;
                    if (rp != null)
                        //前节点不为空,前节点的后节点为root对象的后节点
                        rp.next = rn;
                    if (first != null)
                        //如果原来数组位置上的元素不为空,将该元素的前节点设为root
                        first.prev = root;
                    //root后节点设为原来的元素,前节点置空
                    root.next = first;
                    root.prev = null;
                }
                //红黑树的最后判断
                assert checkInvariants(root);
            }
        }

k、将传入的键值对集合放到HashMap中public void putAll(Map<? extends K, ? extends V> m)

 public void putAll(Map<? extends K, ? extends V> m) {
     //调用方法将集合元素放到HashMap中
        putMapEntries(m, true);
    }

l、移除传入的键对应的键值对public V remove(Object key)

 public V remove(Object key) {
        Node<K,V> e;
     //返回移除的元素的value
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }

//从Node键值对数组中移除相对应的元素
 final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                //只有一个节点,将该值返回
                node = p;
            //如果有多个节点
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    //树结构
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    //链表结构
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

m、移除HashMap中所有的元素clear()

 public void clear() {
        Node<K,V>[] tab;
        modCount++;
        if ((tab = table) != null && size > 0) {
            size = 0;
            for (int i = 0; i < tab.length; ++i)
                tab[i] = null;
        }
    }

n、判断HashMap是否包含传入的value值得键值对public boolean containsValue(Object value)

public boolean containsValue(Object value) {
        Node<K,V>[] tab; V v;
        if ((tab = table) != null && size > 0) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                    if ((v = e.value) == value ||
                        (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }

o、返回一个KeySet视图public Set<K> keySet(),用于通过键取值等

 public Set<K> keySet() {
        Set<K> ks = keySet;
        if (ks == null) {
            ks = new KeySet();
            keySet = ks;
        }
        return ks;
    }

p、移除HashMap中指定键值对元素public boolean remove(Object key, Object value)

 public boolean remove(Object key, Object value) {
        return removeNode(hash(key), key, value, true, true) != null;
    }

q、替换指定key的value值public boolean replace(K key, V oldValue, V newValue)

 public boolean replace(K key, V oldValue, V newValue) {
        Node<K,V> e; V v;
        if ((e = getNode(hash(key), key)) != null &&
            ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
            e.value = newValue;
            afterNodeAccess(e);
            return true;
        }
        return false;
    }

//替换的重载方法
 public V replace(K key, V value) {
        Node<K,V> e;
        if ((e = getNode(hash(key), key)) != null) {
            V oldValue = e.value;
            e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
        return null;
    }

4、补充

a、红黑树特点

  • 每个节点可以是红的或者黑的
  • 根节点是黑的
  • 每个叶子节点是黑的
  • 如果一个节点是红的,则它的两个子节点都是黑的
  • 对于每个节点,从该节点到其任何叶子节点的所有路径上包含相同数目的黑色节点

b、新增一个节点,都假设为红色

c、变色、旋转的情况

  • 新节点设置为红色

  • 父节点是黑色,不用调整

  • 父节点是红色:

    • 叔叔节点为空,旋转、变色(左旋还是右旋看新节点插在父节点的左边还是右边)
    • 叔叔是红色,父节点+叔叔节点变黑色,祖父节点变红色
    • 叔叔是黑色,旋转、变色
  • HashMap中红黑树平衡方法

    static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
                                                        TreeNode<K,V> x) {
                x.red = true;
        //root:根节点,x:插入的新节点,xp:插入节点的父节点,xpp:插入节点的祖父节点,xppl:插入节点的祖父节点的左子节点,xppr:插入节点的祖父节点的右子节点
        //对树进行循环
                for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
                    //如果插入节点的父节点为空,则该节点为树的第一个节点,直接返回
                    if ((xp = x.parent) == null) {
                        x.red = false;
                        return x;
                    }
                    //如果插入节点的父节点为黑色,或者祖父节点为空,则父节点为根节点
                    else if (!xp.red || (xpp = xp.parent) == null)
                        return root;
                    //如果父节点为祖父节点的左子节点
                    if (xp == (xppl = xpp.left)) {
                        //祖父节点有右子节点,即插入节点有叔叔节点,并且为红色
                        if ((xppr = xpp.right) != null && xppr.red) {
                            //叔叔节点变黑,父节点变黑,祖父节点变红
                            xppr.red = false;
                            xp.red = false;
                            xpp.red = true;
                            //再将祖父节点赋值为x,递归进行调整
                            x = xpp;
                        }
                        //如果不存在叔叔节点
                        else {
                            //如果新节点为父节点的右子节点,则进行左旋
                            if (x == xp.right) {
                                root = rotateLeft(root, x = xp);
                                //新节点的父节点若不为空,则获取祖父节点
                                xpp = (xp = x.parent) == null ? null : xp.parent;
                            }
                            //父节点不为空
                            if (xp != null) {
                                //父节点变黑
                                xp.red = false;
                                //祖父节点不为空
                                if (xpp != null) {
                                    //祖父节点变红
                                    xpp.red = true;
                                    //右旋
                                    root = rotateRight(root, xpp);
                                }
                            }
                        }
                    }
                    //如果父节点为祖父节点的右子节点
                    else {
                        //如果存在叔叔节点且叔叔节点为红色
                        if (xppl != null && xppl.red) {
                            //叔叔节点变黑,父节点变黑,祖父节点变红
                            xppl.red = false;
                            xp.red = false;
                            xpp.red = true;
                            //递归查找
                            x = xpp;
                        }
                        //如果不存在叔叔节点
                        else {
                            //新节点为父节点左子节点
                            if (x == xp.left) {
                                //右旋
                                root = rotateRight(root, x = xp);
                                xpp = (xp = x.parent) == null ? null : xp.parent;
                            }
                            
                            if (xp != null) {
                                xp.red = false;
                                if (xpp != null) {
                                    xpp.red = true;
                                    //左旋
                                    root = rotateLeft(root, xpp);
                                }
                            }j
                        }
                    }
                }
            }
    
    
    
    //左旋方法
     static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
                                                  TreeNode<K,V> p) {
                TreeNode<K,V> r, pp, rl;
                if (p != null && (r = p.right) != null) {
                    if ((rl = p.right = r.left) != null)
                        rl.parent = p;
                    if ((pp = r.parent = p.parent) == null)
                        (root = r).red = false;
                    else if (pp.left == p)
                        pp.left = r;
                    else
                        pp.right = r;
                    r.left = p;
                    p.parent = r;
                }
                return root;
            }
    ~~~
    
    
    

版权声明:本文为qq_44583593原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。