向量的施密特正交化

先看一个例子:
设三个向量分别为:

α1α2α3=(1,1,0)T=(1,0,1)T=(1,1,1)T

那么对 α1,α2正交化:
β1β2=α1=(1,1,0)T=α2(α2,β1)(β1,β1)β1=(1,0,1)T1×1+0×(1)+(1)×01×1+(1)×(1)+0×0(1,1,0)T=(1,0,1)T12(1,1,0)T=12(1,1,2)T

再对 β1,β2,β3单位化:
γ1γ2γ3=12(1,1,0)T=16(1,1,2)T=13(1,1,1)T

以下施密特正交化的标准定义引自Wiki

We define the projection operator by

proju(v)=v,uu,uu

where v,udenotes the inner product of the vectors vand u. This operator projects the vector vorthogonally onto the line spanned by vector u. If u=0, we define proj0(v):=0. i.e., the procjection map proj0is the zero map, sending every vector to the zero vector.
The Gram-Schmidt process then works as follows:
u1u2u3u4uk=v1=v2proju1(v2)=v3proju1(v3)proju2(v3),=v4proju1(v4)proju2(v4)proju3(v4),=vkj=1k1projuj(vk),e1=u1u1e2=u2u2e3=u3u3e3=u4u4ek=ukuk

The sequence u1,...,ukis the required system of orthogonal vectors, and the normalized vectors e1,...,ekfrom an orthonormal set. The calculation of the sequence u1,...,ukis known as Gram-Schmidt rothogonalization, while the calculation of the sequence e1,...,ekis known as Gram-Schmidt orthonormalization as the vectors are normalized.

部分符号和国内教材上有差异。


版权声明:本文为ucxiii原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。