先看一个例子:
设三个向量分别为:
α1α2α3=(1,−1,0)T=(1,0,−1)T=(1,1,1)T
那么对 α1,α2正交化:
β1β2=α1=(1,−1,0)T=α2−(α2,β1)(β1,β1)β1=(1,0,−1)T−1×1+0×(−1)+(−1)×01×1+(−1)×(−1)+0×0(1,−1,0)T=(1,0,−1)T−12(1,−1,0)T=12(1,1,−2)T
再对 β1,β2,β3单位化:
γ1γ2γ3=12‾‾√(1,−1,0)T=16‾‾√(1,1,−2)T=13‾‾√(1,1,1)T
以下施密特正交化的标准定义引自Wiki
We define the projection operator by
proju(v)=⟨v,u⟩⟨u,u⟩u
where ⟨v,u⟩denotes the inner product of the vectors vand u. This operator projects the vector vorthogonally onto the line spanned by vector u. If u=0, we define proj0(v):=0. i.e., the procjection map proj0is the zero map, sending every vector to the zero vector.
The Gram-Schmidt process then works as follows:
u1u2u3u4uk=v1=v2−proju1(v2)=v3−proju1(v3)−proju2(v3),=v4−proju1(v4)−proju2(v4)−proju3(v4),⋮=vk−∑j=1k−1projuj(vk),e1=u1∥u1∥e2=u2∥u2∥e3=u3∥u3∥e3=u4∥u4∥ek=uk∥uk∥
The sequence u1,...,ukis the required system of orthogonal vectors, and the normalized vectors e1,...,ekfrom an orthonormal set. The calculation of the sequence u1,...,ukis known as Gram-Schmidt rothogonalization, while the calculation of the sequence e1,...,ekis known as Gram-Schmidt orthonormalization as the vectors are normalized.
部分符号和国内教材上有差异。
版权声明:本文为ucxiii原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。