首先看一下系统架构:
解读create_model方法
1.backbone = MobileNetV2(weights_path="./backbone/mobilenet_v2.pth").features-》加载MobileNetV2预训练模型
backbone.out_channels = 1280-》设置输出通道
2.anchor_generator = AnchorsGenerator(sizes=((32, 64, 128, 256, 512),),
aspect_ratios=((0.5, 1.0, 2.0),))-》调用AnchorsGenerator函数,AnchorsGenerator函数作用以后再讲,
3.roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'], # 在哪些特征层上进行roi 池化
output_size=[7, 7], # roi_pooling输出特征矩阵尺寸
sampling_ratio=2) # 采样率
4. model = FasterRCNN(backbone=backbone,
num_classes=num_classes,
rpn_anchor_generator=anchor_generator,
box_roi_pool=roi_pooler)-》调用faster_rcnn_framework的FasterRCNN
解读main方法:
1.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")-》调用GPU
print(device)
2. if not os.path.exists("save_weights"):
os.makedirs("save_weights")-》 检查保存权重文件夹是否存在,不存在则创建
3. data_transform = {
"train": transforms.Compose([transforms.ToTensor(),
transforms.RandomHorizontalFlip(0.5)]),
"val": transforms.Compose([transforms.ToTensor()])
}-》加载数据预处理函数
4. VOC_root = "./"
assert os.path.exists(os.path.join(VOC_root, "VOCdevkit")), "not found VOCdevkit in path:'{}'".format(VOC_root)-》加载数据集
5.train_data_set = VOC2012DataSet(VOC_root, data_transform["train"], True)-》加载训练数据
train_data_loader = torch.utils.data.DataLoader(train_data_set,
batch_size=8,
shuffle=False,
num_workers=0,
collate_fn=utils.collate_fn)
val_data_set = VOC2012DataSet(VOC_root, data_transform["val"], False)-》加载测试数据
val_data_set_loader = torch.utils.data.DataLoader(val_data_set,
batch_size=1,
shuffle=False,
num_workers=0,
collate_fn=utils.collate_fn)
6. for param in model.backbone.parameters():
param.requires_grad = False-》冻结前置特征提取网络权重
7. params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005,
momentum=0.9, weight_decay=0.0005)-》设置优化器
8.在冻结情况下训练RPN5轮
num_epochs = 5
for epoch in range(num_epochs):
# train for one epoch, printing every 10 iterations
utils.train_one_epoch(model, optimizer, train_data_loader,
device, epoch, print_freq=50,
train_loss=train_loss, train_lr=learning_rate)
utils.evaluate(model, val_data_set_loader, device=device, mAP_list=val_mAP)-》 对测试数据集进行评估
torch.save(model.state_dict(), "./save_weights/pretrain.pth")-》保存权重
9. 解冻前置特征提取网络权重(但冻结backbone部分底层权重)(backbone),接着训练整个网络权重
for name, parameter in model.backbone.named_parameters():
split_name = name.split(".")[0]
if split_name in ["0", "1", "2", "3"]:
parameter.requires_grad = False
else:
parameter.requires_grad = True
10. lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
step_size=5,
gamma=0.33)-》定义这个学习率调节器
11.冻结backbone部分底层权重前提下训练20轮
num_epochs = 20
for epoch in range(num_epochs):
# train for one epoch, printing every 50 iterations
utils.train_one_epoch(model, optimizer, train_data_loader,
device, epoch, print_freq=50,
train_loss=train_loss, train_lr=learning_rate)
12. lr_scheduler.step()-》更新学习率
utils.evaluate(model, val_data_set_loader, device=device, mAP_list=val_mAP)-》对测试数据集进行评估
13. 保存权重
if epoch > 10:
save_files = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch}
torch.save(save_files, "./save_weights/mobile-model-{}.pth".format(epoch))
14. if len(train_loss) != 0 and len(learning_rate) != 0:
from plot_curve import plot_loss_and_lr
plot_loss_and_lr(train_loss, learning_rate)-》画出训练loss和准确率曲线图
15.if len(val_mAP) != 0:
from plot_curve import plot_map
plot_map(val_mAP)-》画出验证集准确率变化图
import torch
import transforms
from network_files.faster_rcnn_framework import FasterRCNN, FastRCNNPredictor
from backbone.resnet50_fpn_model import resnet50_fpn_backbone
from my_dataset import VOC2012DataSet
from train_utils import train_eval_utils as utils
import os
def create_model(num_classes):
backbone = resnet50_fpn_backbone()
model = FasterRCNN(backbone=backbone, num_classes=91)
# 载入预训练模型权重
# https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth
weights_dict = torch.load("./backbone/fasterrcnn_resnet50_fpn_coco.pth")
missing_keys, unexpected_keys = model.load_state_dict(weights_dict, strict=False)
if len(missing_keys) != 0 or len(unexpected_keys) != 0:
print("missing_keys: ", missing_keys)
print("unexpected_keys: ", unexpected_keys)
# get number of input features for the classifier
in_features = model.roi_heads.box_predictor.cls_score.in_features
# replace the pre-trained head with a new one
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
return model
def main(parser_data):
device = torch.device(parser_data.device if torch.cuda.is_available() else "cpu")
print(device)
data_transform = {
"train": transforms.Compose([transforms.ToTensor(),
transforms.RandomHorizontalFlip(0.5)]),
"val": transforms.Compose([transforms.ToTensor()])
}
VOC_root = parser_data.data_path
assert os.path.exists(os.path.join(VOC_root, "VOCdevkit")), "not found VOCdevkit in path:'{}'".format(VOC_root)
# load train data set
train_data_set = VOC2012DataSet(VOC_root, data_transform["train"], True)
# 注意这里的collate_fn是自定义的,因为读取的数据包括image和targets,不能直接使用默认的方法合成batch
train_data_loader = torch.utils.data.DataLoader(train_data_set,
batch_size=1,
shuffle=False,
num_workers=0,
collate_fn=utils.collate_fn)
# load validation data set
val_data_set = VOC2012DataSet(VOC_root, data_transform["val"], False)
val_data_set_loader = torch.utils.data.DataLoader(val_data_set,
batch_size=2,
shuffle=False,
num_workers=0,
collate_fn=utils.collate_fn)
# create model num_classes equal background + 20 classes
model = create_model(num_classes=21)
# print(model)
model.to(device)
# define optimizer
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005,
momentum=0.9, weight_decay=0.0005)
# learning rate scheduler
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
step_size=5,
gamma=0.33)
# 如果指定了上次训练保存的权重文件地址,则接着上次结果接着训练
if parser_data.resume != "":
checkpoint = torch.load(parser_data.resume)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
parser_data.start_epoch = checkpoint['epoch'] + 1
print("the training process from epoch{}...".format(parser_data.start_epoch))
train_loss = []
learning_rate = []
val_mAP = []
for epoch in range(parser_data.start_epoch, parser_data.epochs):
# train for one epoch, printing every 10 iterations
utils.train_one_epoch(model, optimizer, train_data_loader,
device, epoch, train_loss=train_loss, train_lr=learning_rate,
print_freq=50, warmup=True)
# update the learning rate
lr_scheduler.step()
# evaluate on the test dataset
utils.evaluate(model, val_data_set_loader, device=device, mAP_list=val_mAP)
# save weights
save_files = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch}
torch.save(save_files, "./save_weights/resNetFpn-model-{}.pth".format(epoch))
# plot loss and lr curve
if len(train_loss) != 0 and len(learning_rate) != 0:
from plot_curve import plot_loss_and_lr
plot_loss_and_lr(train_loss, learning_rate)
# plot mAP curve
if len(val_mAP) != 0:
from plot_curve import plot_map
plot_map(val_mAP)
# model.eval()
# x = [torch.rand(3, 300, 400), torch.rand(3, 400, 400)]
# predictions = model(x)
# print(predictions)
if __name__ == "__main__":
version = torch.version.__version__[:5] # example: 1.6.0
# 因为使用的官方的混合精度训练是1.6.0后才支持的,所以必须大于等于1.6.0
if version < "1.6.0":
raise EnvironmentError("pytorch version must be 1.6.0 or above")
import argparse
parser = argparse.ArgumentParser(
description=__doc__)
# 训练设备类型
parser.add_argument('--device', default='cuda:0', help='device')
# 训练数据集的根目录
parser.add_argument('--data-path', default='./', help='dataset')
# 文件保存地址
parser.add_argument('--output-dir', default='./save_weights', help='path where to save')
# 若需要接着上次训练,则指定上次训练保存权重文件地址
parser.add_argument('--resume', default='', type=str, help='resume from checkpoint')
# 指定接着从哪个epoch数开始训练
parser.add_argument('--start_epoch', default=0, type=int, help='start epoch')
# 训练的总epoch数
parser.add_argument('--epochs', default=15, type=int, metavar='N',
help='number of total epochs to run')
args = parser.parse_args()
print(args)
# 检查保存权重文件夹是否存在,不存在则创建
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
main(args)
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing