智能数字图像处理之FastRCNN(pytorch)代码解读之train_mobilenet.py

首先看一下系统架构:

 

解读create_model方法

1.backbone = MobileNetV2(weights_path="./backbone/mobilenet_v2.pth").features-》加载MobileNetV2预训练模型
    backbone.out_channels = 1280-》设置输出通道

2.anchor_generator = AnchorsGenerator(sizes=((32, 64, 128, 256, 512),),
                                        aspect_ratios=((0.5, 1.0, 2.0),))-》调用AnchorsGenerator函数,AnchorsGenerator函数作用以后再讲,

3.roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'],  # 在哪些特征层上进行roi 池化
                                                    output_size=[7, 7],   # roi_pooling输出特征矩阵尺寸
                                                    sampling_ratio=2)  # 采样率

4.    model = FasterRCNN(backbone=backbone,
                       num_classes=num_classes,
                       rpn_anchor_generator=anchor_generator,
                       box_roi_pool=roi_pooler)-》调用faster_rcnn_framework的FasterRCNN

解读main方法:

1.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")-》调用GPU
    print(device)

2.    if not os.path.exists("save_weights"):
        os.makedirs("save_weights")-》 检查保存权重文件夹是否存在,不存在则创建

3. data_transform = {
        "train": transforms.Compose([transforms.ToTensor(),
                                     transforms.RandomHorizontalFlip(0.5)]),
        "val": transforms.Compose([transforms.ToTensor()])
    }-》加载数据预处理函数

4. VOC_root = "./"
    assert os.path.exists(os.path.join(VOC_root, "VOCdevkit")), "not found VOCdevkit in path:'{}'".format(VOC_root)-》加载数据集

5.train_data_set = VOC2012DataSet(VOC_root, data_transform["train"], True)-》加载训练数据
    train_data_loader = torch.utils.data.DataLoader(train_data_set,
                                                    batch_size=8,
                                                    shuffle=False,
                                                    num_workers=0,
                                                    collate_fn=utils.collate_fn)
    val_data_set = VOC2012DataSet(VOC_root, data_transform["val"], False)-》加载测试数据
    val_data_set_loader = torch.utils.data.DataLoader(val_data_set,
                                                      batch_size=1,
                                                      shuffle=False,
                                                      num_workers=0,
                                                      collate_fn=utils.collate_fn)

6.    for param in model.backbone.parameters():
        param.requires_grad = False-》冻结前置特征提取网络权重

7. params = [p for p in model.parameters() if p.requires_grad]
    optimizer = torch.optim.SGD(params, lr=0.005,
                                momentum=0.9, weight_decay=0.0005)-》设置优化器

8.在冻结情况下训练RPN5轮

num_epochs = 5
    for epoch in range(num_epochs):
        # train for one epoch, printing every 10 iterations
        utils.train_one_epoch(model, optimizer, train_data_loader,
                              device, epoch, print_freq=50,
                              train_loss=train_loss, train_lr=learning_rate)
        utils.evaluate(model, val_data_set_loader, device=device, mAP_list=val_mAP)-》 对测试数据集进行评估

    torch.save(model.state_dict(), "./save_weights/pretrain.pth")-》保存权重

9.    解冻前置特征提取网络权重(但冻结backbone部分底层权重)(backbone),接着训练整个网络权重 

for name, parameter in model.backbone.named_parameters():
        split_name = name.split(".")[0]
        if split_name in ["0", "1", "2", "3"]:
            parameter.requires_grad = False
        else:
            parameter.requires_grad = True

10.   lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                   step_size=5,
                                                   gamma=0.33)-》定义这个学习率调节器

11.冻结backbone部分底层权重前提下训练20轮

num_epochs = 20
    for epoch in range(num_epochs):
        # train for one epoch, printing every 50 iterations
        utils.train_one_epoch(model, optimizer, train_data_loader,
                              device, epoch, print_freq=50,
                              train_loss=train_loss, train_lr=learning_rate)

12. lr_scheduler.step()-》更新学习率
        utils.evaluate(model, val_data_set_loader, device=device, mAP_list=val_mAP)-》对测试数据集进行评估

13. 保存权重
        if epoch > 10:
            save_files = {
                'model': model.state_dict(),
                'optimizer': optimizer.state_dict(),
                'lr_scheduler': lr_scheduler.state_dict(),
                'epoch': epoch}
            torch.save(save_files, "./save_weights/mobile-model-{}.pth".format(epoch))

14. if len(train_loss) != 0 and len(learning_rate) != 0:
        from plot_curve import plot_loss_and_lr
        plot_loss_and_lr(train_loss, learning_rate)-》画出训练loss和准确率曲线图

15.if len(val_mAP) != 0:
        from plot_curve import plot_map
        plot_map(val_mAP)-》画出验证集准确率变化图

import torch
import transforms
from network_files.faster_rcnn_framework import FasterRCNN, FastRCNNPredictor
from backbone.resnet50_fpn_model import resnet50_fpn_backbone
from my_dataset import VOC2012DataSet
from train_utils import train_eval_utils as utils
import os


def create_model(num_classes):
    backbone = resnet50_fpn_backbone()
    model = FasterRCNN(backbone=backbone, num_classes=91)
    # 载入预训练模型权重
    # https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth
    weights_dict = torch.load("./backbone/fasterrcnn_resnet50_fpn_coco.pth")
    missing_keys, unexpected_keys = model.load_state_dict(weights_dict, strict=False)
    if len(missing_keys) != 0 or len(unexpected_keys) != 0:
        print("missing_keys: ", missing_keys)
        print("unexpected_keys: ", unexpected_keys)

    # get number of input features for the classifier
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    # replace the pre-trained head with a new one
    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)

    return model


def main(parser_data):
    device = torch.device(parser_data.device if torch.cuda.is_available() else "cpu")
    print(device)

    data_transform = {
        "train": transforms.Compose([transforms.ToTensor(),
                                     transforms.RandomHorizontalFlip(0.5)]),
        "val": transforms.Compose([transforms.ToTensor()])
    }

    VOC_root = parser_data.data_path
    assert os.path.exists(os.path.join(VOC_root, "VOCdevkit")), "not found VOCdevkit in path:'{}'".format(VOC_root)
    # load train data set
    train_data_set = VOC2012DataSet(VOC_root, data_transform["train"], True)
    # 注意这里的collate_fn是自定义的,因为读取的数据包括image和targets,不能直接使用默认的方法合成batch
    train_data_loader = torch.utils.data.DataLoader(train_data_set,
                                                    batch_size=1,
                                                    shuffle=False,
                                                    num_workers=0,
                                                    collate_fn=utils.collate_fn)

    # load validation data set
    val_data_set = VOC2012DataSet(VOC_root, data_transform["val"], False)
    val_data_set_loader = torch.utils.data.DataLoader(val_data_set,
                                                      batch_size=2,
                                                      shuffle=False,
                                                      num_workers=0,
                                                      collate_fn=utils.collate_fn)

    # create model num_classes equal background + 20 classes
    model = create_model(num_classes=21)
    # print(model)

    model.to(device)

    # define optimizer
    params = [p for p in model.parameters() if p.requires_grad]
    optimizer = torch.optim.SGD(params, lr=0.005,
                                momentum=0.9, weight_decay=0.0005)

    # learning rate scheduler
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                   step_size=5,
                                                   gamma=0.33)

    # 如果指定了上次训练保存的权重文件地址,则接着上次结果接着训练
    if parser_data.resume != "":
        checkpoint = torch.load(parser_data.resume)
        model.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
        parser_data.start_epoch = checkpoint['epoch'] + 1
        print("the training process from epoch{}...".format(parser_data.start_epoch))

    train_loss = []
    learning_rate = []
    val_mAP = []

    for epoch in range(parser_data.start_epoch, parser_data.epochs):
        # train for one epoch, printing every 10 iterations
        utils.train_one_epoch(model, optimizer, train_data_loader,
                              device, epoch, train_loss=train_loss, train_lr=learning_rate,
                              print_freq=50, warmup=True)
        # update the learning rate
        lr_scheduler.step()

        # evaluate on the test dataset
        utils.evaluate(model, val_data_set_loader, device=device, mAP_list=val_mAP)

        # save weights
        save_files = {
            'model': model.state_dict(),
            'optimizer': optimizer.state_dict(),
            'lr_scheduler': lr_scheduler.state_dict(),
            'epoch': epoch}
        torch.save(save_files, "./save_weights/resNetFpn-model-{}.pth".format(epoch))

    # plot loss and lr curve
    if len(train_loss) != 0 and len(learning_rate) != 0:
        from plot_curve import plot_loss_and_lr
        plot_loss_and_lr(train_loss, learning_rate)

    # plot mAP curve
    if len(val_mAP) != 0:
        from plot_curve import plot_map
        plot_map(val_mAP)

    # model.eval()
    # x = [torch.rand(3, 300, 400), torch.rand(3, 400, 400)]
    # predictions = model(x)
    # print(predictions)


if __name__ == "__main__":
    version = torch.version.__version__[:5]  # example: 1.6.0
    # 因为使用的官方的混合精度训练是1.6.0后才支持的,所以必须大于等于1.6.0
    if version < "1.6.0":
        raise EnvironmentError("pytorch version must be 1.6.0 or above")

    import argparse

    parser = argparse.ArgumentParser(
        description=__doc__)

    # 训练设备类型
    parser.add_argument('--device', default='cuda:0', help='device')
    # 训练数据集的根目录
    parser.add_argument('--data-path', default='./', help='dataset')
    # 文件保存地址
    parser.add_argument('--output-dir', default='./save_weights', help='path where to save')
    # 若需要接着上次训练,则指定上次训练保存权重文件地址
    parser.add_argument('--resume', default='', type=str, help='resume from checkpoint')
    # 指定接着从哪个epoch数开始训练
    parser.add_argument('--start_epoch', default=0, type=int, help='start epoch')
    # 训练的总epoch数
    parser.add_argument('--epochs', default=15, type=int, metavar='N',
                        help='number of total epochs to run')

    args = parser.parse_args()
    print(args)

    # 检查保存权重文件夹是否存在,不存在则创建
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    main(args)

https://github.com/WZMIAOMIAO/deep-learning-for-image-processing


版权声明:本文为com_fang_bean原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。