张宇1000题概率论与数理统计 第八章 统计量及其分布

目录

A AA

5.设X 1 , X 2 , ⋯ , X n ( n ⩾ 2 ) X_1,X_2,\cdots,X_n(n\geqslant2)X1,X2,,Xn(n2)为来自总体X ∼ N ( 0 , 1 ) X\sim N(0,1)XN(0,1)的简单随机样本,X ‾ \overline{X}X为样本均值,令Y = ∑ i = 1 n ( X i − X ‾ ) 2 σ 2 Y=\cfrac{\displaystyle\sum^n_{i=1}(X_i-\overline{X})^2}{\sigma^2}Y=σ2i=1n(XiX)2,则Y ∼ Y\simY( )。
( A ) χ 2 ( n − 1 ) ; (A)\chi^2(n-1);(A)χ2(n1);
( B ) χ 2 ( n ) ; (B)\chi^2(n);(B)χ2(n);
( C ) N ( μ , σ 2 ) ; (C)N(\mu,\sigma^2);(C)N(μ,σ2);
( D ) N ( μ , σ 2 n ) ; (D)N\left(\mu,\cfrac{\sigma^2}{n}\right);(D)N(μ,nσ2);

一般地,χ 2 \chi^2χ2分布定义为:若随机变量X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots,X_nX1,X2,,Xn独立同分布,且都服从标准正态分布N ( 0 , 1 ) N(0,1)N(0,1),则称统计量χ 2 = X 1 2 + X 2 2 + ⋯ + X n 2 \chi^2=X_1^2+X_2^2+\cdots+X_n^2χ2=X12+X22++Xn2服从自由度为n nnχ 2 \chi^2χ2分布,记为χ 2 ∼ χ 2 ( n ) \chi^2\sim\chi^2(n)χ2χ2(n)
在讨论抽样分布时,在总体均值μ \muμ已知的情况下,统计量∑ i = 1 n ( X i − μ ) 2 σ 2 \cfrac{\displaystyle\sum^n_{i=1}(X_i-\mu)^2}{\sigma^2}σ2i=1n(Xiμ)2服从自由度为n nnχ 2 \chi^2χ2分布,在μ \muμ未知的情况下,统计量( n − 1 ) S 2 σ 2 \cfrac{(n-1)S^2}{\sigma^2}σ2(n1)S2服从自由度为n − 1 n-1n1χ 2 \chi^2χ2分布,由此可以判定Y YY应服从自由度为n − 1 n-1n1χ 2 \chi^2χ2分布,故选( A ) (A)(A)。(这道题主要利用了统计量分布求解

B BB

13.设X 1 , X 2 , X 3 , X 4 X_1,X_2,X_3,X_4X1,X2,X3,X4为来自总体N ( 1 , σ 2 ) ( σ > 0 ) N(1,\sigma^2)(\sigma>0)N(1,σ2)(σ>0)的简单随机样本,求统计量X 1 − X 2 ∣ X 3 + X 4 − 2 ∣ \cfrac{X_1-X_2}{|X_3+X_4-2|}X3+X42X1X2的分布类型和自由度。

X 1 − X 2 ∣ X 3 + X 4 − 2 ∣ = X 1 − X 2 2 σ ( X 3 + X 4 − 2 2 σ ) 2 \cfrac{X_1-X_2}{|X_3+X_4-2|}=\cfrac{\cfrac{X_1-X_2}{\sqrt{2}\sigma}}{\sqrt{\left(\cfrac{X_3+X_4-2}{\sqrt{2}\sigma}\right)^2}}X3+X42X1X2=(2σX3+X42)22σX1X2,其中X 1 − X 2 2 σ ∼ N ( 0 , 1 ) \cfrac{X_1-X_2}{\sqrt{2}\sigma}\sim N(0,1)2σX1X2N(0,1),且X 3 + X 4 − 2 2 σ ∼ N ( 0 , 1 ) , ( X 3 + X 4 − 2 2 σ ) 2 ∼ χ 2 ( 1 ) \cfrac{X_3+X_4-2}{\sqrt{2}\sigma}\sim N(0,1),\left(\cfrac{X_3+X_4-2}{\sqrt{2}\sigma}\right)^2\sim\chi^2(1)2σX3+X42N(0,1),(2σX3+X42)2χ2(1)。又X 1 − X 2 2 σ \cfrac{X_1-X_2}{\sqrt{2}\sigma}2σX1X2( X 3 + X 4 − 2 2 σ ) 2 \left(\cfrac{X_3+X_4-2}{\sqrt{2}\sigma}\right)^2(2σX3+X42)2相互独立。根据t tt分布的典型模式,知X 1 − X 2 2 σ ( X 3 + X 4 − 2 2 σ ) 2 ∼ t ( 1 ) \cfrac{\cfrac{X_1-X_2}{\sqrt{2}\sigma}}{\sqrt{\left(\cfrac{X_3+X_4-2}{\sqrt{2}\sigma}\right)^2}}\sim t(1)(2σX3+X42)22σX1X2t(1),即该统计量服从自由度为1 11t tt分布。(这道题主要利用了构造分布求解

14.设X 1 , X 2 , ⋯ , X n , X n + 1 ( n ⩾ 2 ) X_1,X_2,\cdots,X_n,X_{n+1}(n\geqslant2)X1,X2,,Xn,Xn+1(n2)是来自总体N ( μ , σ 2 ) N(\mu,\sigma^2)N(μ,σ2)的简单随机样本,X ∗ ‾ = 1 n ∑ i = 1 n X i , S ∗ 2 = 1 n ∑ i = 1 n ( X i − X ∗ ‾ ) 2 \overline{X^*}=\cfrac{1}{n}\displaystyle\sum^n_{i=1}X_i,S^{*^2}=\cfrac{1}{n}\displaystyle\sum^n_{i=1}(X_i-\overline{X^*})^2X=n1i=1nXi,S2=n1i=1n(XiX)2,求统计量T = X n + 1 − X ∗ ‾ S ∗ n − 1 n + 1 T=\cfrac{X_{n+1}-\overline{X^*}}{S^*}\sqrt{\cfrac{n-1}{n+1}}T=SXn+1Xn+1n1的分布。

X n + 1 − X ∗ ‾ ∼ N ( 0 , n + 1 n σ 2 ) X_{n+1}-\overline{X^*}\sim N\left(0,\cfrac{n+1}{n}\sigma^2\right)Xn+1XN(0,nn+1σ2),知X n + 1 − X ∗ ‾ n + 1 n σ ∼ N ( 0 , 1 ) \cfrac{X_{n+1}-\overline{X^*}}{\sqrt{\cfrac{n+1}{n}\sigma}}\sim N(0,1)nn+1σXn+1XN(0,1),且n S ∗ 2 σ 2 ∼ χ 2 ( n − 1 ) \cfrac{nS^{*^2}}{\sigma^2}\sim\chi^2(n-1)σ2nS2χ2(n1)。由于X n + 1 X_{n+1}Xn+1X ∗ ‾ \overline{X^*}X相互独立,X n + 1 X_{n+1}Xn+1S ∗ 2 S^{*^2}S2相互独立,又X ∗ ‾ \overline{X^*}XS ∗ 2 S^{*^2}S2相互独立,因此,X n + 1 − X ∗ ‾ X_{n+1}-\overline{X^*}Xn+1XS ∗ 2 S^{*^2}S2相互独立。于是T = X n + 1 − X ∗ ‾ S ∗ n − 1 n + 1 = X n + 1 − X ∗ ‾ n + 1 / n σ n S ∗ 2 σ 2 / ( n − 1 ) ∼ t ( n − 1 ) T=\cfrac{X_{n+1}-\overline{X^*}}{S^*}\sqrt{\cfrac{n-1}{n+1}}=\cfrac{\cfrac{X_{n+1}-\overline{X^*}}{\sqrt{n+1/n}\sigma}}{\sqrt{\cfrac{nS^{*^2}}{\sigma^2}\biggm/(n-1)}}\sim t(n-1)T=SXn+1Xn+1n1=σ2nS2/(n1)n+1/nσXn+1Xt(n1)。(这道题主要利用了构造分布求解

C CC

2.设总体X ∼ N ( a , σ 2 ) , Y ∼ N ( b , σ 2 ) X\sim N(a,\sigma^2),Y\sim N(b,\sigma^2)XN(a,σ2),YN(b,σ2),且相互独立。分别从X XXY YY中各抽取容量为9 9910 1010的简单随机样本,记它们的方差分别为S X 2 S_X^2SX2S Y 2 S_Y^2SY2,并记S 12 2 = 1 2 ( S X 2 + S Y 2 ) S_{12}^2=\cfrac{1}{2}(S_X^2+S_Y^2)S122=21(SX2+SY2)S X Y 2 = 1 18 ( 8 S X 2 + 10 S Y 2 ) S_{XY}^2=\cfrac{1}{18}(8S_X^2+10S_Y^2)SXY2=181(8SX2+10SY2),则这四个统计量中,方差最小者是( )。
( A ) S X 2 ; (A)S_X^2;(A)SX2;
( B ) S Y 2 ; (B)S_Y^2;(B)SY2;
( C ) S 12 2 ; (C)S_{12}^2;(C)S122;
( D ) S X Y 2 . (D)S_{XY}^2.(D)SXY2.

8 S X 2 σ 2 ∼ χ 2 ( 8 ) , 9 S X 2 σ 2 ∼ χ 2 ( 9 ) \cfrac{8S_X^2}{\sigma^2}\sim\chi^2(8),\cfrac{9S_X^2}{\sigma^2}\sim\chi^2(9)σ28SX2χ2(8),σ29SX2χ2(9)D ( S X 2 ) = 2 σ 4 8 = 1 4 σ 4 , D ( S Y 2 ) = 2 σ 4 9 , D ( S 12 2 ) = 1 4 ( 1 4 σ 4 + 2 9 σ 4 ) = 17 144 σ 4 , D ( S X Y 2 ) = 16 81 × 1 4 σ 4 + 25 81 × 2 9 σ 4 = 86 729 σ 4 D(S_X^2)=\cfrac{2\sigma^4}{8}=\cfrac{1}{4}\sigma^4,D(S_Y^2)=\cfrac{2\sigma^4}{9},D(S_{12}^2)=\cfrac{1}{4}\left(\cfrac{1}{4}\sigma^4+\cfrac{2}{9}\sigma^4\right)=\cfrac{17}{144}\sigma^4,D(S_{XY}^2)=\cfrac{16}{81}\times\cfrac{1}{4}\sigma^4+\cfrac{25}{81}\times\cfrac{2}{9}\sigma^4=\cfrac{86}{729}\sigma^4D(SX2)=82σ4=41σ4,D(SY2)=92σ4,D(S122)=41(41σ4+92σ4)=14417σ4,D(SXY2)=8116×41σ4+8125×92σ4=72986σ4,所以方差最小者为S X Y 2 S_{XY}^2SXY2,故选( D ) (D)(D)。(这道题主要利用了方差变换求解

4.设X 1 , X 2 , X 3 , X 4 , X 5 X_1,X_2,X_3,X_4,X_5X1,X2,X3,X4,X5是来自总体X ∼ N ( 0 , 2 2 ) X\sim N(0,2^2)XN(0,22)的简单随机样本,X ‾ = 1 3 ∑ i = 1 3 X i \overline{X}=\cfrac{1}{3}\displaystyle\sum^3_{i=1}X_iX=31i=13Xi

(1)令随机变量Y = ∑ i = 1 3 ( X i − X ‾ ) 2 + ( X 4 − X 5 ) 2 Y=\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2+(X_4-X_5)^2Y=i=13(XiX)2+(X4X5)2,求E ( Y ) E(Y)E(Y)D ( Y ) D(Y)D(Y)

X 1 , X 2 , X 3 , X 4 , X 5 X_1,X_2,X_3,X_4,X_5X1,X2,X3,X4,X5是来自总体X ∼ N ( 0 , 2 2 ) X\sim N(0,2^2)XN(0,22)的简单随机样本,由1 2 2 ∑ i = 1 3 ( X i − X ‾ ) 2 ∼ χ 2 ( 2 ) \cfrac{1}{2^2}\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2\sim\chi^2(2)221i=13(XiX)2χ2(2),得E [ 1 2 2 ∑ i = 1 3 ( X i − X ‾ ) 2 ] = 2 ⇒ E [ ∑ i = 1 3 ( X i − X ‾ ) 2 ] = 8 , D [ 1 2 2 ∑ i = 1 3 ( X i − X ‾ ) 2 ] = 4 ⇒ D [ ∑ i = 1 3 ( X i − X ‾ ) 2 ] = 64 E\left[\cfrac{1}{2^2}\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2\right]=2\Rightarrow E\left[\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2\right]=8,D\left[\cfrac{1}{2^2}\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2\right]=4\Rightarrow D\left[\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2\right]=64E[221i=13(XiX)2]=2E[i=13(XiX)2]=8,D[221i=13(XiX)2]=4D[i=13(XiX)2]=64。又X 4 − X 5 ∼ N ( 0 , 8 ) ⇒ X 4 − X 5 8 ∼ N ( 0 , 1 ) ⇒ ( X 4 − X 5 ) 2 8 ∼ χ 2 ( 1 ) X_4-X_5\sim N(0,8)\Rightarrow\cfrac{X_4-X_5}{\sqrt{8}}\sim N(0,1)\Rightarrow\cfrac{(X_4-X_5)^2}{8}\sim\chi^2(1)X4X5N(0,8)8X4X5N(0,1)8(X4X5)2χ2(1),得E [ ( X 4 − X 5 ) 2 8 ] = 1 ⇒ E [ ( X 4 − X 5 ) 2 ] = 8 , D [ ( X 4 − X 5 ) 2 8 ] = 2 ⇒ D [ ( X 4 − X 5 ) 2 ] = 128 E\left[\cfrac{(X_4-X_5)^2}{8}\right]=1\Rightarrow E[(X_4-X_5)^2]=8,D\left[\cfrac{(X_4-X_5)^2}{8}\right]=2\Rightarrow D[(X_4-X_5)^2]=128E[8(X4X5)2]=1E[(X4X5)2]=8,D[8(X4X5)2]=2D[(X4X5)2]=128。所以E ( Y ) = E [ ∑ i = 1 3 ( X i − X ‾ ) 2 ] + E [ ( X 4 − X 5 ) 2 ] = 8 + 8 = 16 E(Y)=E\left[\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2\right]+E[(X_4-X_5)^2]=8+8=16E(Y)=E[i=13(XiX)2]+E[(X4X5)2]=8+8=16。又∑ i = 1 3 ( X i − X ‾ ) 2 \displaystyle\sum^3_{i=1}(X_i-\overline{X})^2i=13(XiX)2( X 4 − X 5 ) 2 (X_4-X_5)^2(X4X5)2独立,所以D ( Y ) = D [ ∑ i = 1 3 ( X i − X ‾ ) 2 + ( X 4 − X 5 ) 2 ] = D [ ∑ i = 1 3 ( X i − X ‾ ) 2 ] + D [ ( X 4 − X 5 ) 2 ] = 64 + 128 = 192 D(Y)=D\left[\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2+(X_4-X_5)^2\right]=D\left[\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2\right]+D[(X_4-X_5)^2]=64+128=192D(Y)=D[i=13(XiX)2+(X4X5)2]=D[i=13(XiX)2]+D[(X4X5)2]=64+128=192

(2)求随机变量Z = X 4 − X 5 ∑ i = 1 3 ( X i − X ‾ ) 2 Z=\cfrac{X_4-X_5}{\sqrt{\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2}}Z=i=13(XiX)2X4X5的分布;

X 4 − X 5 8 ∼ N ( 0 , 1 ) , 1 2 2 ∑ i = 1 3 ( X i − X ‾ ) 2 ∼ χ 2 ( 2 ) \cfrac{X_4-X_5}{\sqrt{8}}\sim N(0,1),\cfrac{1}{2^2}\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2\sim\chi^2(2)8X4X5N(0,1),221i=13(XiX)2χ2(2),又∑ i = 1 3 ( X i − X ‾ ) 2 \displaystyle\sum^3_{i=1}(X_i-\overline{X})^2i=13(XiX)2( X 4 − X 5 ) 2 (X_4-X_5)^2(X4X5)2独立,所以Z = X 4 − X 5 ∑ i = 1 3 ( X i − X ‾ ) 2 = X 4 − X 5 8 1 2 2 ∑ i = 1 3 ( X i − X ‾ ) 2 2 ∼ t ( 2 ) Z=\cfrac{X_4-X_5}{\sqrt{\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2}}=\cfrac{\cfrac{X_4-X_5}{\sqrt{8}}}{\sqrt{\cfrac{\cfrac{1}{2^2}\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2}{2}}}\sim t(2)Z=i=13(XiX)2X4X5=2221i=13(XiX)28X4X5t(2)

(3)对于(2)中的Z ZZ,给定α ( 0 < α < 0.5 ) \alpha(0<\alpha<0.5)α(0<α<0.5),常数c cc满足P { Z > c } = α P\{Z>c\}=\alphaP{Z>c}=α,随机变量U ∼ F ( 2 , 1 ) U\sim F(2,1)UF(2,1),求P { U > 1 c 2 } P\left\{U>\cfrac{1}{c^2}\right\}P{U>c21}

Z ∼ t ( 2 ) ⇒ Z 2 ∼ F ( 1 , 2 ) Z\sim t(2)\Rightarrow Z^2\sim F(1,2)Zt(2)Z2F(1,2),又U ∼ F ( 2 , 1 ) U\sim F(2,1)UF(2,1),故1 Z 2 \cfrac{1}{Z^2}Z21U UU同分布,则P { U > 1 c 2 } = P { 1 Z 2 > 1 c 2 } = P { Z 2 < c 2 } = P { − c < Z < c } = 1 − 2 α P\left\{U>\cfrac{1}{c^2}\right\}=P\left\{\cfrac{1}{Z^2}>\cfrac{1}{c^2}\right\}=P\{Z^2<c^2\}=P\{-c<Z<c\}=1-2\alphaP{U>c21}=P{Z21>c21}=P{Z2<c2}=P{c<Z<c}=12α。(这道题主要利用了方差变换求解

写在最后

如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
欢迎非商业转载,转载请注明出处。


版权声明:本文为hnyy0301原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。