YOLOv5–7.0代码解读全导航
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3) 初始学习率(SGD=1E-2, Adam=1E-3) 训练参数相关
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf) 最终学习率, 以one_cycle形式或者线性从lr0衰减至lr0 * lrf
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4 optimizer权重衰减系数 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok) 前3个epoch进行warmup
warmup_momentum: 0.8 # warmup initial momentum warmup初始化动量
warmup_bias_lr: 0.1 # warmup initial bias lr warmup初始bias学习率
box: 0.05 # box loss gain box iou损失系数 损失函数相关
cls: 0.5 # cls loss gain cls分类损失系数
cls_pw: 1.0 # cls BCELoss positive_weight cls BCELoss正样本权重
obj: 1.0 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight obj BCELoss正样本权重
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
# anchors: 3 # anchors per output layer (0 to ignore)
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction) hsv增强系数 色调
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction) hsv增强系数 饱和度
hsv_v: 0.4 # image HSV-Value augmentation (fraction) hsv增强系数 亮度
degrees: 0.0 # image rotation (+/- deg) random_perspective增强系数 旋转角度 (+/- deg)
translate: 0.1 # image translation (+/- fraction) random_perspective增强系数 平移 (+/- fraction)
scale: 0.5 # image scale (+/- gain) random_perspective增强系数 图像缩放 (+/- gain)
shear: 0.0 # image shear (+/- deg) random_perspective增强系数 图像剪切 (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001 random_perspective增强系数 透明度 (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability) 上下翻转数据增强(probability)
fliplr: 0.5 # image flip left-right (probability) 左右翻转数据增强(probability)
mosaic: 1.0 # image mosaic (probability) mosaic数据增强(probability)
mixup: 0.0 # image mixup (probability) mixup数据增强(probability)
copy_paste: 0.0 # segment copy-paste (probability)
版权声明:本文为ag_ndqn原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。