1.旋转数组的最小数字
- 每次递归将中间值和右侧值相比,划分为三种情况
- 保证最小值在每次指定的搜索区间内
class Solution {
public int minArray(int[] numbers) {
return binarySearch(numbers, 0, numbers.length - 1);
}
private int binarySearch(int[] numbers, int start, int end) {
// 递归出口
if (start >= end) {
return numbers[start];
}
// 中间值和右侧值相比,分为三种情况
int mid = (start + end) / 2;
if (numbers[mid] > numbers[end]) {
start = mid + 1;
} else if (numbers[mid] < numbers[end]) {
end = mid;
} else {
end--;
}
return binarySearch(numbers, start, end);
}
}
2.旋转数组的目标值下标
- 先找到旋转数组的最小值下标,然后在两个有序数组中二分查找目标值
class Solution {
public int search(int[] nums, int target) {
int minIdx = findMinIdx(nums, 0, nums.length - 1);
return Math.max(binarySearch(nums, target, 0, minIdx - 1), binarySearch(nums, target, minIdx, nums.length - 1));
}
/**
寻找最小值下标
*/
private int findMinIdx(int[] nums, int start, int end) {
if (start > end) {
return -1;
} else if (start == end) {
return start;
}
int mid = (start + end) / 2;
if (nums[mid] < nums[end]) {
return findMinIdx(nums, start, mid);
} else {
return findMinIdx(nums, mid + 1, end);
}
}
/**
在有序数组中,二分法查找目标值下标
*/
private int binarySearch(int[] nums, int target, int start, int end) {
// 递归出口
if (start > end) {
return -1;
}
int mid = (start + end) / 2;
if (nums[mid] == target) {
return mid;
} else if (nums[mid] > target) {
return binarySearch(nums, target, start, mid - 1);
} else {
return binarySearch(nums, target, mid + 1, end);
}
}
}
3.0~n-1缺失的数字
class Solution {
public int missingNumber(int[] nums) {
// 特判:少了第一个数字
if (nums[0] == 1) {
return 0;
}
// 特判:少了最后一个数字
if (nums[nums.length - 1] == nums.length - 1) {
return nums.length;
}
return binarySearch(nums, 0, nums.length - 1);
}
private int binarySearch(int[] nums, int start, int end) {
// 递归出口
if (start >= end) {
return start;
}
int mid = (start + end) / 2;
if (nums[mid] > mid) {
if (nums[mid - 1] == mid - 1) {
return mid;
} else {
end = mid - 1;
}
} else {
start = mid + 1;
}
return binarySearch(nums, start, end);
}
}
4.寻找峰值
- 上坡一定有坡顶,因为超出数组范围就是负无穷,所以每次选择更高的方向递归
class Solution {
public int findPeakElement(int[] nums) {
if (nums.length == 1) {
return 0;
}
return binarySearch(nums, 0, nums.length - 1);
}
private int binarySearch(int[] nums, int l, int r) {
if (l > r) {
return -1;
}
int mid = (l + r) / 2;
// 当前位置是峰值
if ((mid > 0 && mid < nums.length - 1 && nums[mid - 1] < nums[mid] && nums[mid + 1] < nums[mid]) || (mid == 0 && nums[0] > nums[1]) || (mid == nums.length - 1 && nums[nums.length - 1] > nums[nums.length - 2])) {
return mid;
}
// 当前位置不是峰值:【上坡一定有坡顶,因为超出数组范围就是负无穷】
if (mid >= 1 && nums[mid - 1] > nums[mid]) {
return binarySearch(nums, l, mid - 1);
} else {
return binarySearch(nums, mid + 1, r);
}
}
}
5.在排序数组中寻找目标值的开始和结束位置
- 方法1:二分法找到目标值,并向左右扩展
class Solution {
public int[] searchRange(int[] nums, int target) {
// 二分法查找,然后左右扩展
int idx = binarySearch(nums, target, 0, nums.length - 1);
if (idx == -1) {
return new int[]{-1, -1};
}
int l = idx;
int r = idx;
while (l >= 0 && nums[l] == target) {
l--;
}
while (r < nums.length && nums[r] == target) {
r++;
}
return new int[]{l + 1, r - 1};
}
private int binarySearch(int[] nums, int target, int start, int end) {
if (start > end) {
return -1;
}
int mid = (start + end) / 2;
if (nums[mid] == target) {
return mid;
} else if (nums[mid] < target) {
return binarySearch(nums, target, mid + 1, end);
} else {
return binarySearch(nums, target, start, mid - 1);
}
}
}
- 方法2:两次二分法
class Solution {
public int[] searchRange(int[] nums, int target) {
return new int[]{binarySearch(nums, target, 0, nums.length - 1, true), binarySearch(nums, target, 0, nums.length - 1, false)};
}
private int binarySearch(int[] nums, int target, int start, int end, boolean findLeftIndex) {
// 递归出口
if (start > end) {
return -1;
}
if (start == end) {
return (nums[start] == target) ? start : -1;
}
int mid = (start + end) / 2;
if (nums[mid] == target) {
// 找到左边界
if (findLeftIndex && ((mid > 0 && nums[mid - 1] != target) || mid == 0)) {
return mid;
} else if (findLeftIndex) {
return binarySearch(nums, target, start, mid - 1, findLeftIndex);
}
// 找到右边界
if (!findLeftIndex && ((mid < nums.length - 1 && nums[mid + 1] != target) || mid == nums.length - 1)) {
return mid;
} else {
return binarySearch(nums, target, mid + 1, end, findLeftIndex);
}
} else if (nums[mid] < target) {
return binarySearch(nums, target, mid + 1, end, findLeftIndex);
} else {
return binarySearch(nums, target, start, mid - 1, findLeftIndex);
}
}
}
版权声明:本文为weixin_43785688原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。