【概率论基础进阶】多维随机变量及其分布-两个随机变量函数Z=g(X,Y)的分布

X , Y X,YX,Y均为离散型随机变量

与一维离散型类似(画表,加和)

X , Y X,YX,Y均为连续型随机变量

可用公式
F Z ( z ) = P { Z ≤ z } = P { g ( X , Y ) ≤ z } = ∬ g ( x , y ) ≤ z f ( x , y ) d x d y F_{Z}(z)=P \left\{Z \leq z\right\}=P \left\{g(X,Y) \leq z\right\}=\iint\limits_{g(x,y)\leq z}f(x,y)dxdyFZ(z)=P{Zz}=P{g(X,Y)z}=g(x,y)zf(x,y)dxdy

例1:Z = X + Y Z=X+YZ=X+Y的分布
( X , Y ) (X,Y)(X,Y)的概率密度为f ( x , y ) f(x,y)f(x,y),则Z = X + Y Z=X+YZ=X+Y的分布函数
F Z ( z ) = P { X + Y ≤ z } = ∬ x + y ≤ z f ( x , y ) d x d y = ∫ − ∞ + ∞ d x ∫ − ∞ z − x f ( x , y ) d y 或 ∫ − ∞ + ∞ d y ∫ − ∞ z − y f ( x , y ) d x \begin{aligned} F_{Z}(z)&=P \left\{X+Y \leq z\right\}\\ &=\iint\limits_{x+y \leq z}f(x,y)dxdy\\ &=\int_{-\infty}^{+\infty}dx \int_{-\infty}^{z-x}f(x,y)dy \quad 或\quad \int_{-\infty}^{+\infty}dy \int_{-\infty}^{z-y}f(x,y)dx \end{aligned}FZ(z)=P{X+Yz}=x+yzf(x,y)dxdy=+dxzxf(x,y)dy+dyzyf(x,y)dx
由此可以得到Z = X + Y Z=X+YZ=X+Y的概率密度为
f Z ( z ) = ∫ − ∞ + ∞ f ( x , z − x ) d x = ∫ − ∞ + ∞ f ( z − y , y ) d y f_{Z}(z)=\int_{-\infty}^{+\infty}f(x,z-x)dx=\int_{-\infty}^{+\infty}f(z-y,y)dyfZ(z)=+f(x,zx)dx=+f(zy,y)dy

这里说实话我不知道为啥( F Z ( z ) ) ′ = f Z ( z ) (F_{Z}(z))'=f_{Z}(z)(FZ(z))=fZ(z),后续尽量补上

特别是当X XXY YY相互独立时,f ( x , y ) = f X ( x ) ⋅ f Y ( y ) f(x,y)=f_{X}(x)\cdot f_{Y}(y)f(x,y)=fX(x)fY(y),则
f Z ( z ) = ∫ − ∞ + ∞ f X ( x ) f Y ( z − x ) d x = ∫ − ∞ + ∞ f X ( z − y ) f Y ( y ) d y f_{Z}(z)=\int_{-\infty}^{+\infty}f_{X}(x)f_{Y}(z-x)dx=\int_{-\infty}^{+\infty}f_{X}(z-y)f_{Y}(y)dyfZ(z)=+fX(x)fY(zx)dx=+fX(zy)fY(y)dy
这个公式称为卷积公式,记为
f Z = f X ∗ f Y f_{Z}=f_{X}*f_{Y}fZ=fXfY

X XX为离散型随机变量,Y YY为连续型随机变量

一般对离散型随机变量X XX的各种可能用全概率公式把它们展开

Y YY为连续型,Z = g ( X , Y ) Z=g(X,Y)Z=g(X,Y),则
F Z ( z ) = P { Z ≤ z } = P { g ( X , Y ) ≤ z } = ∑ i P { X = x i } P { g ( X , Y ) ≤ z ∣ X = x i } 即 P ( x i ) = p i = ∑ i p i P { g ( X , Y ) ≤ z ∣ X = x i } \begin{aligned} F_{Z}(z)&=P \left\{Z \leq z\right\}\\ &=P\left\{g(X,Y)\leq z\right\}\\ &=\sum\limits_{i}^{}P \left\{X= x_{i}\right\}P \left\{g(X,Y) \leq z|X=x_{i}\right\}\\ &即P(x_{i})=p_{i}\\ &=\sum\limits_{i}^{}p_{i}P \left\{g(X,Y) \leq z|X=x_{i}\right\} \end{aligned}FZ(z)=P{Zz}=P{g(X,Y)z}=iP{X=xi}P{g(X,Y)zX=xi}P(xi)=pi=ipiP{g(X,Y)zX=xi}

Z = max ⁡ { X , Y } Z=\max \left\{X,Y\right\}Z=max{X,Y}的分布

max ⁡ { X , Y } \max \left\{X,Y\right\}max{X,Y}不大于z zz等价于X XXY YY都不大于z zz,即
F Z ( z ) = P { Z ≤ z } = P { X ≤ z , Y ≤ z } = P { X ≤ z } P { Y ≤ z } = F X ( z ) F Y ( z ) \begin{aligned} F_{Z}(z)&=P \left\{Z \leq z\right\}\\ &=P \left\{X \leq z,Y \leq z\right\}\\ &=P \left\{X \leq z\right\}P \left\{Y \leq z\right\}\\ &=F_{X}(z)F_{Y}(z) \end{aligned}FZ(z)=P{Zz}=P{Xz,Yz}=P{Xz}P{Yz}=FX(z)FY(z)

Z = min ⁡ { X , Y } Z=\min \left\{X,Y\right\}Z=min{X,Y}的分布

F Z ( z ) = P { Z ≤ z } = 1 − P { Z > z } = 1 − P { X > z , Y > z } = 1 − P { X > z } P { Y > z } = 1 − ( 1 − F X ( z ) ) ( 1 − F Y ( z ) ) = F X ( z ) + F Y ( z ) − F X ( z ) F Y ( z ) 也可 F Z ( z ) = P { Z ≤ z } = P { min ⁡ { X , Y } ≤ z } = P { X ≤ z ∪ Y ≤ z } = P { X ≤ z } + P { Y ≤ z } − P { X ≤ z , Y ≤ z } = 1 − ( 1 − F X ( z ) ) ( 1 − F Y ( z ) ) = F X ( z ) + F Y ( z ) − F X ( z ) F Y ( z ) \begin{aligned} F_{Z}(z)&=P \left\{Z \leq z\right\}\\ &=1-P \left\{Z >z\right\}\\ &=1-P \left\{X>z,Y>z\right\}\\ &=1-P \left\{X>z\right\}P \left\{Y>z\right\}\\ &=1-(1-F_{X}(z))(1-F_{Y}(z))\\ &=F_{X}(z)+F_{Y}(z)-F_{X}(z)F_{Y}(z)\\ &也可\\ F_{Z}(z)&=P \left\{Z \leq z\right\}\\ &=P \left\{\min \left\{X,Y\right\}\leq z\right\}\\ &=P \left\{X \leq z \cup Y \leq z\right\}\\ &=P \left\{X \leq z\right\}+P \left\{Y \leq z\right\}-P \left\{X \leq z,Y \leq z\right\}\\ &=1-(1-F_{X}(z))(1-F_{Y}(z))\\ &=F_{X}(z)+F_{Y}(z)-F_{X}(z)F_{Y}(z) \end{aligned}FZ(z)FZ(z)=P{Zz}=1P{Z>z}=1P{X>z,Y>z}=1P{X>z}P{Y>z}=1(1FX(z))(1FY(z))=FX(z)+FY(z)FX(z)FY(z)也可=P{Zz}=P{min{X,Y}z}=P{XzYz}=P{Xz}+P{Yz}P{Xz,Yz}=1(1FX(z))(1FY(z))=FX(z)+FY(z)FX(z)FY(z)

以上结果可以推广至n nn个相互独立的随机变量

例2:设随机变量X XXY YY相互独立,X ∼ E ( λ 1 ) , Y ∼ E ( λ 2 ) , λ 1 , λ 2 > 0 X \sim E(\lambda_{1}),Y \sim E(\lambda_{2}),\lambda_{1},\lambda_{2}>0XE(λ1),YE(λ2),λ1,λ2>0,令Z = min ⁡ { X , Y } Z=\min \left\{X,Y\right\}Z=min{X,Y},求Z ZZ的概率密度函数f Z ( z ) f_{Z}(z)fZ(z)

由公式
F Z ( x ) = F X ( z ) + F Y ( z ) − F X ( z ) F Y ( z ) F_{Z}(x)=F_{X}(z)+F_{Y}(z)-F_{X}(z)F_{Y}(z)FZ(x)=FX(z)+FY(z)FX(z)FY(z)
z > 0 z>0z>0
f Z ( z ) = F Z ′ ( x ) = f X ( z ) + f Y ( z ) − f X ( z ) F Y ( z ) − F X ( z ) f Y ( z ) = ( λ 1 + λ 2 ) e − ( λ 1 + λ 2 ) z \begin{aligned} f_{Z}(z)=F'_{Z}(x)&=f_{X}(z)+f_{Y}(z)-f_{X}(z)F_{Y}(z)-F_{X}(z)f_{Y}(z)\\ &=(\lambda_{1}+\lambda_{2})e^{-(\lambda_{1}+\lambda_{2})z} \end{aligned}fZ(z)=FZ(x)=fX(z)+fY(z)fX(z)FY(z)FX(z)fY(z)=(λ1+λ2)e(λ1+λ2)z
z ≤ 0 z \leq 0z0
f Z ( z ) = 0 f_{Z}(z)=0fZ(z)=0

Z ∼ E ( λ 1 + λ 2 ) Z \sim E(\lambda_{1}+\lambda_{2})ZE(λ1+λ2)

也可用
F Z ( z ) = 1 − { P { X > z } P { Y > z } } = { 1 − e λ 1 x e − λ 2 x = 1 − e − ( λ 1 + λ 2 ) x z > 0 0 z ≤ 0 f Z ( z ) = F Z ′ ( z ) = { ( λ 1 + λ 2 ) e − ( λ 1 + λ 2 ) x z > 0 0 z ≤ 0 \begin{aligned} F_{Z}(z)&=1- \left\{P \left\{X >z\right\}P \left\{Y>z\right\}\right\}\\ &=\left\{\begin{aligned}&1-e^{\lambda_{1}x}e^{-\lambda_{2}x}=1-e^{-(\lambda_{1}+\lambda_{2})x}&z>0\\&0&z \leq 0\end{aligned}\right.\\ f_{Z}(z)&=F'_{Z}(z)=\left\{\begin{aligned}&(\lambda_{1}+\lambda_{2})e^{-(\lambda_{1}+\lambda_{2})x}&z>0\\&0&z \leq 0\end{aligned}\right. \end{aligned}FZ(z)fZ(z)=1{P{X>z}P{Y>z}}={1eλ1xeλ2x=1e(λ1+λ2)x0z>0z0=FZ(z)={(λ1+λ2)e(λ1+λ2)x0z>0z0

Z ∼ E ( λ 1 + λ 2 ) Z \sim E(\lambda_{1}+\lambda_{2})ZE(λ1+λ2)

例3:设二维随机变量( X , Y ) (X,Y)(X,Y)的概率密度为
f ( x , y ) = { 2 − x − y 0 < x < 1 , 0 < y < 1 0 其他 f(x,y)=\left\{\begin{aligned}&2-x-y&0<x<1,0<y<1\\&0&其他\end{aligned}\right.f(x,y)={2xy00<x<1,0<y<1其他

  • P { X > 2 Y } P \left\{X>2Y\right\}P{X>2Y}
  • Z = X + Y Z=X+YZ=X+Y的概率密度f Z ( z ) f_{Z}(z)fZ(z)

P { X > 2 Y } = ∬ x > 2 y f ( x , y ) d x d d y = ∬ D ( 2 − x − y ) d x d y = ∫ 0 1 d x ∫ 0 1 2 x ( 2 − x − y ) d y = 7 24 \begin{aligned} P \left\{X>2Y \right\}&=\iint\limits_{x>2y}f(x,y)dxddy\\ &=\iint\limits_{D}(2-x-y)dxdy\\ &=\int_{0}^{1}dx \int_{0}^{\frac{1}{2}x}(2-x-y)dy\\ &=\frac{7}{24} \end{aligned}P{X>2Y}=x>2yf(x,y)dxddy=D(2xy)dxdy=01dx021x(2xy)dy=247

f Z ( z ) = ∫ − ∞ + ∞ f ( x , z − x ) d x f_{Z}(z)=\int_{-\infty}^{+\infty}f(x,z-x)dxfZ(z)=+f(x,zx)dx
先考虑被积函数f ( x , z − x ) f(x,z-x)f(x,zx)中第一个自变量x xx的变化范围,只有当0 < x < 1 0<x<10<x<1时,f ( x , z − x ) f(x,z-x)f(x,zx)才不等于0 00,因此被积函数上下限最大范围为( 0 , 1 ) (0,1)(0,1)
再考虑被积函数f ( x , z − x ) f(x,z-x)f(x,zx)中第二个自变量z − x z-xzx的变化范围,只有当0 < z − x < 1 0<z-x<10<zx<1时,f ( x , z − x ) f(x,z-x)f(x,zx)不为0 00,因此需要对z zz分区间讨论
z ≤ 0 z \leq 0z0时,由于0 < x < 1 0<x<10<x<1,故z − x < 0 z-x<0zx<0,所以
f Z ( z ) = 0 f_{Z}(z)=0fZ(z)=0
0 < z ≤ 1 0<z \leq 10<z1时,
f Z ( z ) = ∫ 0 z ( 2 − z ) d x = 2 z − z 2 f_{Z}(z)=\int_{0}^{z}(2-z)dx=2z-z^{2}fZ(z)=0z(2z)dx=2zz2
1 < z ≤ 2 1<z \leq 21<z2
f Z ( z ) = ∫ z − 1 1 ( 2 − z ) d x = 4 − 4 z + z 2 f_{Z}(z)=\int_{z-1}^{1}(2-z)dx=4-4z+z^{2}fZ(z)=z11(2z)dx=44z+z2
2 < z 2<z2<z时,由于0 < x < 1 0<x<10<x<1,故z − x > 0 z-x>0zx>0,所以
f Z ( z ) = 0 f_{Z}(z)=0fZ(z)=0
因此
f Z ( z ) = { 2 z − z 2 0 < z ≤ 1 4 − 4 z + z 2 1 < z ≤ 2 0 其他 f_{Z}(z)=\left\{\begin{aligned}&2z-z^{2}&0<z \leq 1\\&4-4z+z^{2}&1<z \leq 2\\&0&其他\end{aligned}\right.fZ(z)=2zz244z+z200<z11<z2其他

这里直接用最基本的方法比卷积公式简单

![[附件/Pasted image 20220915221320.png|300]]

F Z ( z ) = P { Z ≤ z } = P { X + Y ≤ z } = ∬ x + y ≤ z f ( x , y ) d x d y F_{Z}(z)=P \left\{Z \leq z\right\}=P \left\{X+Y \leq z\right\}=\iint\limits_{x+y \leq z}f(x,y)dxdyFZ(z)=P{Zz}=P{X+Yz}=x+yzf(x,y)dxdy
z ≤ 0 z \leq 0z0时,
F Z ( z ) = 0 F_{Z}(z)=0FZ(z)=0
0 < z ≤ 1 0<z \leq 10<z1时,
F Z ( z ) = ∬ D 1 f ( x , y ) d x d y = ∫ 0 x d x ∫ 0 z − x ( 2 − x − y ) d y = z 2 − 1 3 z 3 \begin{aligned} F_{Z}(z)&=\iint\limits_{D_{1}}f(x,y)dxdy\\ &=\int_{0}^{x}dx \int_{0}^{z-x}(2-x-y)dy\\ &=z^{2}- \frac{1}{3}z^{3} \end{aligned}FZ(z)=D1f(x,y)dxdy=0xdx0zx(2xy)dy=z231z3
1 < z ≤ 2 1<z \leq 21<z2
F Z ( z ) = 1 − ∬ x + y > z f ( x , y ) d x d y = 1 − ∬ D 2 f ( x , y ) d x d y = 1 − ∫ z − 1 1 d x ∫ z − x 1 ( 2 − x − y ) d y = 1 3 z 3 − 2 z 2 + 4 z − 5 3 \begin{aligned} F_{Z}(z)&=1- \iint\limits_{x+y>z}f(x,y)dxdy\\ &=1-\iint\limits_{D_{2}}f(x,y)dxdy\\ &=1- \int_{z-1}^{1}dx \int_{z-x}^{1}(2-x-y)dy\\ &=\frac{1}{3}z^{3}-2z^{2}+4z- \frac{5}{3} \end{aligned}FZ(z)=1x+y>zf(x,y)dxdy=1D2f(x,y)dxdy=1z11dxzx1(2xy)dy=31z32z2+4z35
2 < z 2<z2<z时,
F Z ( z ) = 1 F_{Z}(z)=1FZ(z)=1
所以
f Z ( z ) = F Z ′ ( z ) = { 2 z − z 2 0 < z ≤ 1 4 − 4 z + z 2 1 < z ≤ 2 0 其他 f_{Z}(z)=F'_{Z}(z)=\left\{\begin{aligned}&2z-z^{2}&0<z \leq 1\\&4-4z+z^{2}&1<z \leq 2\\&0&其他\end{aligned}\right.fZ(z)=FZ(z)=2zz244z+z200<z11<z2其他

例4:设二维随机变量( X , Y ) (X,Y)(X,Y)服从正态分布N ( 1 , 0 ; 1 , 1 ; 0 ) N(1,0;1,1;0)N(1,0;1,1;0),则P { X Y − Y < 0 } = ( ) P \left\{XY-Y<0\right\}=()P{XYY<0}=()

由于ρ = 0 \rho=0ρ=0,因此X XXY YY相互独立,且X ∼ N ( 1 , 1 ) , Y ∼ N ( 0 , 1 ) X \sim N(1,1),Y \sim N(0,1)XN(1,1),YN(0,1),也就有( X − 1 ) ∼ N ( 0 , 1 ) (X-1) \sim N(0,1)(X1)N(0,1)Y YY相互独立
根据正态分布密度的对称性,有
P { X − 1 < 0 } = P { X − 1 > 0 } = P { Y < 0 } = P { Y > 0 } = 1 2 P \left\{X-1<0\right\}=P \left\{X-1>0\right\}=P \left\{Y<0\right\}=P \left\{Y>0\right\}=\frac{1}{2}P{X1<0}=P{X1>0}=P{Y<0}=P{Y>0}=21
因此
P { X Y − Y < 0 } = P { ( X − 1 ) Y < 0 } = P { X − 1 < 0 , Y > 0 } + P { X − 1 > 0 , Y < 0 } = P { X − 1 < 0 } P { Y > 0 } + P { X − 1 > 0 } P { Y < 0 } = 1 2 \begin{aligned} P \left\{XY-Y<0\right\}&=P \left\{(X-1)Y<0\right\}\\ &=P \left\{X-1<0,Y>0\right\}+P \left\{X-1>0,Y<0\right\}\\ &=P \left\{X-1<0\right\}P \left\{Y>0\right\}+P \left\{X-1>0\right\}P \left\{Y<0\right\}\\ &=\frac{1}{2} \end{aligned}P{XYY<0}=P{(X1)Y<0}=P{X1<0,Y>0}+P{X1>0,Y<0}=P{X1<0}P{Y>0}+P{X1>0}P{Y<0}=21

CSDN话题挑战赛第2期
参赛话题:学习笔记


版权声明:本文为liu20020918zz原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。