在服务第一次应用时设置线程池的参数不知道该设置多少,可以利用这个工具类,根据当前机器和你的业务逻辑计算一个最佳参数。
package com.advance.mistra.tuning;
import java.math.BigDecimal;
import java.math.RoundingMode;
import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.BlockingQueue;
/**
* A class that calculates the optimal thread pool boundaries. It takes the desired target utilization and the desired
* work queue memory consumption as input and retuns thread count and work queue capacity.
* 计算线程池参数和队列大小的工具类:原文:https://www.javacodegeeks.com/2012/03/threading-stories-about-robust-thread.html
*
* @author Niklas Schlimm
*/
public abstract class PoolSizeCalculator {
/**
* The sample queue size to calculate the size of a single {@link Runnable} element.
*/
private final int SAMPLE_QUEUE_SIZE = 1000;
/**
* Accuracy of test run. It must finish within 20ms of the testTime otherwise we retry the test. This could be
* configurable.
*/
private final int EPSYLON = 20;
/**
* Control variable for the CPU time investigation.
*/
private volatile boolean expired;
/**
* Time (millis) of the test run in the CPU time calculation.
*/
private final long testtime = 3000;
/**
* Calculates the boundaries of a thread pool for a given {@link Runnable}.
*
* @param targetUtilization the desired utilization of the CPUs (0 <= targetUtilization <= 1)
* @param targetQueueSizeBytes the desired maximum work queue size of the thread pool (bytes)
*/
protected void calculateBoundaries(BigDecimal targetUtilization, BigDecimal targetQueueSizeBytes) {
calculateOptimalCapacity(targetQueueSizeBytes);
Runnable task = creatTask();
start(task);
start(task); // warm up phase
long cputime = getCurrentThreadCPUTime();
start(task); // test intervall
cputime = getCurrentThreadCPUTime() - cputime;
long waittime = (testtime * 1000000) - cputime;
calculateOptimalThreadCount(cputime, waittime, targetUtilization);
}
private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) {
long mem = calculateMemoryUsage();
BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal(mem), RoundingMode.HALF_UP);
System.out.println("Target queue memory usage (bytes): " + targetQueueSizeBytes);
System.out.println("createTask() produced " + creatTask().getClass().getName() + " which took " + mem
+ " bytes in a queue");
System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem);
System.out.println("* Recommended queue capacity (bytes): " + queueCapacity);
}
/**
* Brian Goetz' optimal thread count formula, see 'Java Concurrency in Practice' (chapter 8.2)
*
* @param cpu cpu time consumed by considered task
* @param wait wait time of considered task
* @param targetUtilization target utilization of the system
*/
private void calculateOptimalThreadCount(long cpu, long wait, BigDecimal targetUtilization) {
BigDecimal waitTime = new BigDecimal(wait);
BigDecimal computeTime = new BigDecimal(cpu);
BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime().availableProcessors());
BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization).multiply(
new BigDecimal(1).add(waitTime.divide(computeTime, RoundingMode.HALF_UP)));
System.out.println("Number of CPU: " + numberOfCPU);
System.out.println("Target utilization: " + targetUtilization);
System.out.println("Elapsed time (nanos): " + (testtime * 1000000));
System.out.println("Compute time (nanos): " + cpu);
System.out.println("Wait time (nanos): " + wait);
System.out.println("Formula: " + numberOfCPU + " * " + targetUtilization + " * (1 + " + waitTime + " / "
+ computeTime + ")");
System.out.println("* Optimal thread count: " + optimalthreadcount);
}
/**
* Runs the {@link Runnable} over a period defined in {@link #testtime}. Based on Heinz Kabbutz' ideas
* (http://www.javaspecialists.eu/archive/Issue124.html).
*
* @param task the runnable under investigation
*/
public void start(Runnable task) {
long start = 0;
int runs = 0;
do {
if (++runs > 5) {
throw new IllegalStateException("Test not accurate");
}
expired = false;
start = System.currentTimeMillis();
Timer timer = new Timer();
timer.schedule(new TimerTask() {
public void run() {
expired = true;
}
}, testtime);
while (!expired) {
task.run();
}
start = System.currentTimeMillis() - start;
timer.cancel();
} while (Math.abs(start - testtime) > EPSYLON);
collectGarbage(3);
}
private void collectGarbage(int times) {
for (int i = 0; i < times; i++) {
System.gc();
try {
Thread.sleep(10);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
}
}
/**
* Calculates the memory usage of a single element in a work queue. Based on Heinz Kabbutz' ideas
* (http://www.javaspecialists.eu/archive/Issue029.html).
*
* @return memory usage of a single {@link Runnable} element in the thread pools work queue
*/
public long calculateMemoryUsage() {
BlockingQueue<Runnable> queue = createWorkQueue();
for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
queue.add(creatTask());
}
long mem0 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();
long mem1 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();
queue = null;
collectGarbage(15);
mem0 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();
queue = createWorkQueue();
for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
queue.add(creatTask());
}
collectGarbage(15);
mem1 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();
return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;
}
/**
* Create your runnable task here.
*
* @return an instance of your runnable task under investigation
*/
protected abstract Runnable creatTask();
/**
* Return an instance of the queue used in the thread pool.
*
* @return queue instance
*/
protected abstract BlockingQueue<Runnable> createWorkQueue();
/**
* Calculate current cpu time. Various frameworks may be used here, depending on the operating system in use. (e.g.
* http://www.hyperic.com/products/sigar). The more accurate the CPU time measurement, the more accurate the results
* for thread count boundaries.
*
* @return current cpu time of current thread
*/
protected abstract long getCurrentThreadCPUTime();
}
配置好 期望CPU利用率,期望队列最大占用内存大小即可
package com.advance.mistra.tuning;
import java.lang.management.ManagementFactory;
import java.math.BigDecimal;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
/**
* 描述
*
* @author mistra@future.com
* @date 2023/2/26
*/
public class MyPoolSizeCalculator extends PoolSizeCalculator {
/**
* 运行结果
* Target queue memory usage (bytes): 100000 期望blockingQueue最大占用的内存大小
* createTask() produced com.advance.mistra.tuning.MyPoolSizeCalculator$AsynchronousTask which took 40 bytes in a queue
* Formula: 100000 / 40
* * Recommended queue capacity (bytes): 2500 // 推荐队列容量大小
* Number of CPU: 16 // 当前机器CPU核心数
* Target utilization: 1 // 期望CPU利用率
* Elapsed time (nanos): 3000000000
* Compute time (nanos): 3015625000
* Wait time (nanos): -15625000
* Formula: 16 * 1 * (1 + -15625000 / 3015625000) // 计算公式
* * Optimal thread count: 16 // 推荐最佳线程数
*
* @param args
*/
public static void main(String[] args) {
MyPoolSizeCalculator calculator = new MyPoolSizeCalculator();
// 第一个参数:CPU目标利用率 第二个参数 blockingQueue占用的内存大小 byte
calculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));
}
protected long getCurrentThreadCPUTime() {
// 当前线程占用的总时间
return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();
}
/**
* 用这个方法来计算合理参数
*/
protected Runnable creatTask() {
return new AsynchronousTask();
}
protected BlockingQueue createWorkQueue() {
return new LinkedBlockingQueue<>();
}
/**
* 假如这是你的线程池的任务
*/
class AsynchronousTask implements Runnable {
@Override
public void run() {
// 业务逻辑代码
// System.out.println(Thread.currentThread().getName());
}
}
}
* 运行结果
* Target queue memory usage (bytes): 100000 期望blockingQueue最大占用的内存大小
* createTask() produced com.advance.mistra.tuning.MyPoolSizeCalculator$AsynchronousTask which took 40 bytes in a queue
* Formula: 100000 / 40
* * Recommended queue capacity (bytes): 2500 // 推荐队列容量大小
* Number of CPU: 16 // 当前机器CPU核心数
* Target utilization: 1 // 期望CPU利用率
* Elapsed time (nanos): 3000000000
* Compute time (nanos): 3015625000
* Wait time (nanos): -15625000
* Formula: 16 * 1 * (1 + -15625000 / 3015625000) // 计算公式
* * Optimal thread count: 16 // 推荐最佳线程数
版权声明:本文为Axela30W原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。