目录
如何使用Redis实现分布式锁?
先谈谈分布式锁是啥-What
实现分布式锁的两个要求
要求一:分布式锁的加锁和释放锁的过程,涉及多个操作。需要保证这些锁操作的原子性;
要求二:共享存储系统保存了锁变量,需要考虑保证共享存储系统的可靠性,进而保证锁的可靠性。
再谈如何在单个 Redis 节点实现分布式锁-How
使用 SET 命令和 Lua 脚本在 Redis 单节点上实现分布式锁。
可以用SETNX单命令操作实现加锁操作。
这个命令在执行时会判断键值对是否存在,如果不存在,就设置键值对的值,如果存在,就不做任何设置。
对于释放锁操作来说,使用 DEL 命令删除锁变量。
问题:
- 第一个风险是,假如某个客户端在执行了 SETNX 命令、加锁之后,紧接着却在操作共享数据时发生了异常,结果一直没有执行最后的 DEL 命令释放锁。
解决:给锁变量设置一个过期时间。 - 第二个风险。如果客户端 A 执行了 SETNX 命令加锁后,假设客户端 B 执行了 DEL 命令释放锁,此时,客户端 A 的锁就被误释放了。
解决:让每个客户端给锁变量设置一个唯一值,这里的唯一值就可以用来标识当前操作的客户端。在释放锁操作时,客户端需要判断,当前锁变量的值是否和自己的唯一标识相等,只有在相等的情况下,才能释放锁。
所以释放锁操作中,就要使用 Lua 脚本,因为释放锁操作的逻辑也包含了读取锁变量、判断值、删除锁变量的多个操作,而 Redis 在执行 Lua 脚本时,可以以原子性的方式执行,从而保证了锁释放操作的原子性。
再谈在多个 Redis 节点实现高可靠的分布式锁-How
为了避免 Redis 实例故障而导致的锁无法工作的问题
分布式锁算法 Redlock登场~~~~
- Redlock 算法的基本思路:让客户端和多个独立的 Redis 实例依次请求加锁,如果客户端能够和半数以上的实例成功地完成加锁操作,那我们就认为客户端成功地获得分布式锁了,否则加锁失败。
具体看下 Redlock 算法的执行步骤。Redlock 算法的实现需要有 N 个独立的 Redis 实例。接下来,我们可以分成 3 步来完成加锁操作。
第一步是,客户端获取当前时间。
第二步是,客户端按顺序依次向 N 个 Redis 实例执行加锁操作(要设置超时时间和客户标识。)如果客户端在和一个 Redis 实例请求加锁时,一直到超时都没有成功,那么此时,客户端会和下一个 Redis 实例继续请求加锁。
第三步是,一旦客户端完成了和所有 Redis 实例的加锁操作,客户端就要计算整个加锁过程的总耗时。
只有在满足下面两个条件,才是加锁成功。
条件一:从超过半数的 Redis 实例上成功获取到了锁;
条件二:客户端获取锁的总耗时没有超过锁的有效时间。
在满足了这两个条件后,我们需要重新计算这把锁的有效时间,计算的结果是锁的最初有效时间减去客户端为获取锁的总耗时。
如果客户端在和所有实例执行完加锁操作后,没能同时满足这两个条件,那么,客户端向所有 Redis 节点发起释放锁的操作。
在 Redlock 算法中,释放锁的操作和在单实例上释放锁的操作一样,只要执行释放锁的 Lua 脚本就可以了。这样一来,只要 N 个 Redis 实例中的半数以上实例能正常工作,就能保证分布式锁的正常工作了。
可以保证以下特性:
安全特性:互斥访问,即永远只有一个 client 能拿到锁
避免死锁:最终 client 都可能拿到锁,不会出现死锁的情况,即使原本锁住某资源的 client crash 了或者出现了网络分区
容错性:只要大部分 Redis 节点存活就可以正常提供服务
分布式Redis是前期做还是后期规模上来了再做好?为什么?
既然Redis是如此的轻量(单实例只使用1M内存),为防止以后的扩容,最好的办法就是一开始就启动较多实例。即便你只有一台服务器,你也可以一开始就让Redis以分布式的方式运行,使用分区,在同一台服务器上启动多个实例。
一开始就多设置几个Redis实例,例如32或者64个实例,对大多数用户来说这操作起来可能比较麻烦,但是从长久来看做这点牺牲是值得的。
这样的话,当你的数据不断增长,需要更多的Redis服务器时,你需要做的就是仅仅将Redis实例从一台服务迁移到另外一台服务器而已(而不用考虑重新分区的问题)。一旦你添加了另一台服务器,你需要将你一半的Redis实例从第一台机器迁移到第二台机器。
Redis 在秒杀场景中的具体应用
Redis 可以在秒杀场景的哪些环节发挥作用?
在秒杀进行中,需要查验和扣减商品库存,库存查验面临大量的高并发请求,而库存扣减又需要和库存查验一起执行,以保证原子性。这就是秒杀对 Redis 的需求。
从 Redis 中读取库存并进行查验
在 Redis 中进行库存扣减
原因:
如果我们把库存扣减的操作放到数据库执行,会带来两个问题。
- 额外开销。Redis 中保存了库存量,而库存量的最新值又是数据库在维护,所以数据库更新后,还需要和 Redis 进行同步,这个过程增加了额外的操作逻辑,也带来了额外的开销。
- 超售。由于数据库的处理速度较慢,不能及时更新库存余量,这就会导致大量库存查验的请求读取到旧的库存值,并进行下单。此时,就会出现下单数量大于实际的库存量。
(注:在RR隔离级别下,读写请求并发请求MySQL,在写请求扣减库存后,读请求由于写请求事务未提交,基于MVCC读到的是旧值;会出现超卖,如果使用select for update相当于读写请求在数据库加锁串行执行,降低并发量)
具体的操作是,当库存查验完成后,一旦库存有余量,我们就立即在 Redis 中扣减库存。而且,为了避免请求查询到旧的库存值,库存查验和库存扣减这两个操作需要保证原子性。
在数据库中处理订单
原因:
订单处理会涉及多个关联操作,涉及数据库中的多张数据表,要保证处理的事务性,需要在数据库中完成。而且,订单处理时的请求压力已经不大了,数据库可以支撑这些订单处理请求。
Redis 是怎么支撑秒杀场景的?
- 支持高并发。这个很简单,Redis 本身高速处理请求的特性就可以支持高并发。而且,如果有多个秒杀商品,我们也可以使用切片集群,用不同的实例保存不同商品的库存,这样就避免,使用单个实例导致所有的秒杀请求都集中在一个实例上的问题了。不过,需要注意的是,当使用切片集群时,我们要先用 CRC 算法计算不同秒杀商品 key 对应的 Slot,然后,我们在分配 Slot 和实例对应关系时,才能把不同秒杀商品对应的 Slot 分配到不同实例上保存。
- 保证库存查验和库存扣减原子性执行。针对这条要求,我们就可以使用 Redis 的原子操作或是分布式锁这两个功能特性来支撑了。
基于原子操作支撑秒杀场景
使用lua脚本原子性执行查库存和减库存这两个操作。
使用分布式锁来保证多个客户端能互斥执行这两个操作。
- 具体做法:先让客户端向 Redis 申请分布式锁,只有拿到锁的客户端才能执行库存查验和库存扣减。这样一来,大量的秒杀请求就会在争夺分布式锁时被过滤掉。而且,库存查验和扣减也不用使用原子操作了,因为多个并发客户端只有一个客户端能够拿到锁,已经保证了客户端并发访问的互斥性。
建议:
可以使用切片集群中的不同实例来分别保存分布式锁和商品库存信息。使用这种保存方式后,秒杀请求会首先访问保存分布式锁的实例。如果客户端没有拿到锁,这些客户端就不会查询商品库存,这就可以减轻保存库存信息的实例的压力了。不要和日常业务系统的数据保存在同一个实例上,这样可以避免干扰业务系统的正常运行。