目的是云端算法中执行LSTM部分计算过程的加速,即用cu文件编译出so,用此so中的LSTM类或函数替代tf.LSTMCell进行运算。
整个项目见Github,流程见博客,博主也刚入门cuda,欢迎留言探讨~
使用自定义操作提供TensorFlow模型
TensorFlow预先构建了一个广泛的操作库和操作内核(实现),可针对不同的硬件类型(CPU,GPU等)进行微调。这些操作自动链接到TensorFlow Serving ModelServer二进制文件,无需用户进行额外的工作。但是,有两个用例需要用户在ops中显式链接到ModelServer:
- 您已经编写了自己的自定义操作(例如,使用 本指南)
- 您正在使用TensorFlow未附带的已实现的操作系统
注意:从2.0版开始,TensorFlow不再分发contrib模块; 如果您使用contrib ops提供TensorFlow程序,请使用本指南明确地将这些操作链接到ModelServer。
无论您是否实现了操作,为了使用自定义操作来提供模型,您都需要访问操作系统的源代码。本指南将指导您完成使用源以使自定义操作可用于服务的步骤。有关自定义操作的实现的指导,请参阅 tensorflow。
先决条件:已经编写了自定义操作并注册到tensorflow op。
将op源复制到Serving项目中
tensorflow_serving文件夹下创建以cuda_lstm_forward命名的文件夹
然后同时把"00_lstm.cu", “00_lstm.so” , “cuda_lstm_forward.h”, “cuda_lstm_forward.cc”,"cuda_lstm_forward.so,"即所有依赖项放到当前文件夹下
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VNiHKFHe-1571281039666)(/Users/zhipeng/Library/Application Support/typora-user-images/image-20190923101116942.png)]
为op构建静态库
在cuda_lstm_forward的文件夹,您会看到一个生成共享对象文件(.so)的目标,您可以将其加载到python中以创建和训练模型。但是,TensorFlow服务在构建时静态链接操作,并且需要一个.a文件。因此,需要创建一个生成此文件的构建规则 tensorflow_serving/cuda_lstm_forward/BUILD:
package(
default_visibility = [
"//tensorflow_serving:internal",
],
features = ["-layering_check"],
)
cc_library(
name = "cuda_lstm_forward.so",
visibility = ["//visibility:public"],
srcs = [
"cuda_lstm_forward.cc",
#"cuda_lstm_forward.h",
"lib00_lstm.so",
#"00_lstm.cu.cc"
] ,
copts = ["-std=c++11"],
deps = ["@org_tensorflow//tensorflow/core:framework_headers_lib",
"@org_tensorflow//tensorflow/core/util/ctc",
"@org_tensorflow//third_party/eigen3",
],
alwayslink=1,
)
bazel BUILD规则参考:bazel C/C++ Rules
使用op链接构建ModelServer
要为使用自定义操作的模型提供服务,您必须使用链接的操作构建ModelServer二进制文件。具体来说,您将cuda_lstm_forward上面创建的构建目标添加到ModelServer的BUILD文件中。
编辑tensorflow_serving/model_servers/BUILD以添加目标中SUPPORTED_TENSORFLOW_OPS包含的自定义op构建server_lib目标:
找到“SUPPORTED_TENSORFLOW_OPS”,做如下修改:
SUPPORTED_TENSORFLOW_OPS = [
"@org_tensorflow//tensorflow/contrib:contrib_kernels",
"@org_tensorflow//tensorflow/contrib:contrib_ops_op_lib",
#Added this line
#"//tensorflow_serving/fsmn_forward:fsmn_forward.so",
"//tensorflow_serving/cuda_lstm_forward:cuda_lstm_forward.so"
]
然后使用tensorflow_serving上层目录下的build_tf.sh编译ModelServer:
#FROM nvidia/cuda:9.0-cudnn7-devel-ubuntu16.04
export TF_CUDA_VERSION=8.0
export TF_CUDNN_VERSION=6
TF_SERVING_COMMIT=tags/1.5.0
#TF_COMMIT=tags/ais_v0.0.1
BAZEL_VERSION=0.15.0
export TF_NEED_CUDA=1
export TF_NEED_S3=1
export TF_CUDA_COMPUTE_CAPABILITIES="3.5,5.2,6.1"
export TF_NEED_GCP=1
export TF_NEED_JEMALLOC=0
export TF_NEED_HDFS=0
export TF_NEED_OPENCL=0
#export TF_NEED_MKL=1
export TF_NEED_VERBS=0
export TF_NEED_MPI=0
export TF_NEED_GDR=0
export TF_ENABLE_XLA=0
export TF_CUDA_CLANG=0
export TF_NEED_OPENCL_SYCL=0
export CUDA_TOOLKIT_PATH=/usr/local/cuda
export CUDNN_INSTALL_PATH=/usr/local/cuda
#export MKL_INSTALL_PATH=/opt/intel/mkl
export GCC_HOST_COMPILER_PATH=/usr/bin/gcc
export PYTHON_BIN_PATH=/usr/bin/python
export PYTHON_LIB_PATH=/usr/lib/python2.7/site-packages/
export CC_OPT_FLAGS="-march=native"
if [ ! -d "./tensorflow" ]; then
git clone https://gitlab.spetechcular.com/core/tensorflow.git
fi
if [ ! -d "./build_out" ]; then
mkdir ./build_out
fi
#git checkout $TF_SERVING_COMMIT
cd ./tensorflow && \
#git checkout $TF_COMMIT
TF_SET_ANDROID_WORKSPACE= ./configure
cd ..
#bazel build -c opt --copt=-mavx --copt=-mavx2 --copt=-mfma --copt=-mfpmath=both --copt=-msse4.2 --config=cuda -k --verbose_failures --crosstool_top=@local_config_cuda//crosstool:toolchain tensorflow_serving/model_servers:tensorflow_model_server
#bazel build -c opt --copt=-mavx --copt=-mfpmath=both --copt=-msse4.2 --config=cuda -k --verbose_failures --crosstool_top=@local_config_cuda//crosstool:toolchain --spawn_strategy=standalone tensorflow_serving/model_servers:tensorflow_model_server
bazel build -c opt --config=cuda -k --verbose_failures --crosstool_top=@local_config_cuda//crosstool:toolchain tensorflow_serving/model_servers:tensorflow_model_server
提供包含您的自定义操作的模型
- 把savemodel拷贝进/home/public/tfs_sever_gpu/tfs_models/cudalstm/ 重命名为1,需要用命令行改mv savedmodel/ 1
- 把依赖项lib00_lstm.so拷贝到/home/public/tfs_sever_gpu/cuda_so/
- 把编译好的
/home/public/serving_gpu_15addopjiami/bazel-bin/tensorflow_serving/model_servers/tensorflow_model_server拷贝到/home/public/tfs_sever_gpu/bin/下,拷贝时无权限用chmod 777 ,用ll查看更新时间确保拷贝成功 - ps -ef |grep tensorflow查看端口号
- 在/home/public/tfs_sever_gpu/下
sh run13.sh开服务器,不需要激活环境和本机无关 - 在/home/public/tfs_sever_gpu/model_transfer/下
python lstmctc.py and python cudalstm.py,环境source activate /home/pz853/anaconda3/envs/py2,这里的环境缺很多包grpc, tensorflow-serving-apiGPUpip第二个后少abs,并且无可逆注意下 - 多并发即同样目录下写个shell脚本用 & 多次跑,测到1 2 4 8 16 32 64 128
#!/home/public/tfs_sever_gpu/run.sh
basepath=$(dirname $(readlink -f $0))
# ipcpath 按需修改
#ipcpath=unix:${basepath}/f
ipcpath=10.12.8.26:9001
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${basepath}/cuda_so
# del model.cfg if exist
if [ -f "${basepath}/cfg/model.cfg" ]; then
rm "${basepath}/cfg/model.cfg"
fi
# prepare model.cfg file
model_cfg=${basepath}/cfg/model.cfg
touch "$model_cfg"
echo "model_config_list: {" >> $model_cfg
for dir in `ls ${basepath}/tfs_models`
do
if [ -d "${basepath}/tfs_models/${dir}" ]; then
echo " config: {" >> $model_cfg
echo " name: \"${dir}\"," >> $model_cfg
echo " ## must be absolute path" >> $model_cfg
echo " base_path: \"${basepath}/tfs_models/${dir}\"," >> $model_cfg
echo " model_platform: \"tensorflow\"" >> $model_cfg
echo " model_version_policy: {" >> $model_cfg
echo " all: {}" >> $model_cfg
echo " }" >> $model_cfg
echo " }" >> $model_cfg
fi
done
echo "}" >> $model_cfg
if [ ! -f "$model_cfg" ]; then
echo "error: $model_cfg not exist"
exit
fi
platform_cfg=${basepath}/cfg/platform.cfg
if [ ! -f "$platform_cfg" ]; then
echo "error: $platform_cfg not exist"
exit
fi
tfs_bin=${basepath}/bin/tensorflow_model_server_addop
#cpuinfo=`cat /proc/cpuinfo |grep flags | sed -n '1p' |grep avx -c`
#if [ $cpuinfo -gt 0 ]; then
# tfs_bin=${basepath}/bin/tensorflow_model_server_xla
#fi
#cpuinfo=`cat /proc/cpuinfo |grep flags | sed -n '1p' |grep avx2 -c`
#if [ $cpuinfo -gt 0 ]; then
# tfs_bin=${basepath}/bin/tensorflow_model_server_sse
#fi
#echo $tfs_bin
#tfs_bin=${basepath}/bin/tensorflow_model_server
while true;
do
#CUDA_VISIBLE_DEVICES=0 exec ${tfs_bin} --ipcpath=10.12.8.26:9002 --model_config_file=${model_cfg} --platform_config_file=${platform_cfg}
CUDA_VISIBLE_DEVICES=0 exec ${tfs_bin} --port=9001 --model_config_file=${model_cfg} --platform_config_file=${platform_cfg}
done