卷积神经网络实现数字识别

卷积神经网络实现数字识别

1.导入相关的库

2.载入数据

(数据集组成)

(tensor()格式的为标准化的单张img)

(标准化后)

3.CNN骨架

4.训练

(第九轮训练)

5.测试

6.保存模型

(训练损失曲线)

(测试损失曲线)

(测试正确率曲线)

完整代码

import time
import torch
from matplotlib import pyplot as plt
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, ReLU, Dropout
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from torchvision.datasets import mnist

#采用GPU
device = torch.device("cuda:0")

#加载数据
train_batch_size = 128
test_batch_size = 128
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.5],[0.5])])
data_train = mnist.MNIST('./data',train=True,transform=transform,target_transform=None,download=True)
data_test = mnist.MNIST('./data',train=False,transform=transform,target_transform=None,download=True)

train_data_size = len(data_train)
test_data_size = len(data_test)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))

train_loader = DataLoader(data_train,batch_size=train_batch_size,shuffle=True)
test_loader = DataLoader(data_test,batch_size=test_batch_size,shuffle=True)

# 可视化数据
examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)
plt.figure(figsize=(9, 9))
for i in range(9):
    plt.subplot(3, 3, i+1)
    plt.title("Ground Truth:{}".format(example_targets[i]))
    plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
    plt.xticks([])
    plt.yticks([])
plt.show()

#搭建CNN网络
class network(nn.Module):
    #[128,1,28,28]
    def __init__(self) -> None:
        super(network,self).__init__()
        self.module1 = nn.Sequential(
            Conv2d(1, 16, 3, 1, padding=1),#[128,16,28,28] w=h=28-3+1+2=28
            ReLU(inplace=True),
            MaxPool2d(kernel_size=2,stride=2),#[128,16,14,14] w=h=(28-2+1+2)/2=14
            Conv2d(16, 32, 3, 1, padding=1),#[128,32,14,14] w=h=14-3+1+2=14
            ReLU(inplace=True),
            MaxPool2d(kernel_size=2,stride=2),#[128,32,7,7] w=h=(14-2+1+2)/2=7
            Flatten(),
            Linear(32*7*7, 128),
            ReLU(),
            Dropout(p=0.5),#缓解过拟合,一定程度上正则化
            Linear(128, 10)
        )

    def forward(self,x):
        x = self.module1(x)
        return x

net = network()
net = net.to(device)
print("模型结构为:")
print(net)

#训练模型

#损失函数

#交叉熵
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device)

#优化器
#随机梯度下降SGD
learning_rate = 0.01
optimizer = torch.optim.SGD(net.parameters(),lr=learning_rate)

#记录训练的次数
total_train_step = 0
#记录测试的次数
total_test_step = 0
#训练轮数
epoch = 10

start_time = time.time()

#添加tensorboard
writer = SummaryWriter("CNN_logs")
for i in range(epoch):
    print("第{}轮训练开始:".format(i+1))

    #训练步骤开始
    net.train()
    total_train_loss = 0
    for data in train_loader:
        imgs, targets = data
        imgs = imgs.to(device)
        targets = targets.to(device)
        outputs = net(imgs)

        loss = loss_fn(outputs, targets)
        total_train_loss = total_train_loss + loss.item()
        #梯度清零,优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            end_time = time.time()
            print("time:",end_time-start_time)
            writer.add_scalar("train_time",end_time-start_time,total_train_step)
            print("训练次数:{},Loss: {}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss",loss.item(),total_train_step)



    #测试步骤开始
    net.eval()
    total_test_loss = 0
    total_accuracy = 0

    with torch.no_grad():
        for data in test_loader:
            imgs, targets = data
            imgs = imgs.to(device)
            targets = targets.to(device)
            outputs = net(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            #argmax(1)行,(0)列
            #正确率
            accuracy = (outputs.argmax(1)==targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("第{}轮,整体测试集上的Loss:{}".format(i+1, total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
    writer.add_scalar("(每一轮)all_test_loss",total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy",total_accuracy / test_data_size, total_test_step)
    total_test_step = total_test_step+1

    #保存每一轮训练的结果
    torch.save(net, "network_{}.pth".format(i+1))
    #torch.save(net.state_dict(),"net_{}.pth".format(i+1))
    print("模型已保存.")
writer.close()


版权声明:本文为J_X0110原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。