李群李代数求导-常用求导公式

参考

A micro Lie theory for state estimation in robotics
manif issues 116

常用求导公式

Operation左雅克比右雅克比
X − 1 \mathcal{X}^{-1}X1J X X − 1 = − I \mathbf{J}_{\mathcal{X}}^{\mathcal{X}^{-1}}=\mathbf{-I}JXX1=IJ X X − 1 = − A d X \mathbf{J}_{\mathcal{X}}^{\mathcal{X}^{-1}}=-\mathbf{Ad}_{\mathcal{X}}JXX1=AdX
X ∘ Y \mathcal{X}\circ\mathcal{Y}XYJ X X ∘ Y = I ∣ J Y X ∘ Y = A d X \mathbf{J}_{\mathcal{X}}^{\mathcal{X} \circ \mathcal{Y}}=\mathbf{I}\mid\mathbf{J}_{\mathcal{Y}}^{\mathcal{X} \circ \mathcal{Y}}=\mathbf{Ad}_{\mathcal{X}}JXXY=IJYXY=AdXJ X X ∘ Y = A d Y − 1 ∣ J Y X ∘ Y = I \mathbf{J}_{\mathcal{X}}^{\mathcal{X} \circ \mathcal{Y}}=\mathbf{Ad}_{\mathcal{Y}}^{-1}\mid\mathbf{J}_{\mathcal{Y}}^{\mathcal{X} \circ \mathcal{Y}}=\mathbf{I}JXXY=AdY1JYXY=I
E x p ( τ ) Exp(\boldsymbol{\tau})Exp(τ)J τ E x p ( τ ) = J l ( τ ) \mathbf{J}_{\boldsymbol{\tau}}^{Exp(\boldsymbol{\tau})}=\mathbf{J}_{l}(\boldsymbol{\tau})JτExp(τ)=Jl(τ)J τ E x p ( τ ) = J r ( τ ) \mathbf{J}_{\boldsymbol{\tau}}^{Exp(\boldsymbol{\tau})}=\mathbf{J}_{r}(\boldsymbol{\tau})JτExp(τ)=Jr(τ)
L o g ( X ) Log(\mathcal{X})Log(X)J X L o g ( X ) = J l − 1 ( τ ) \mathbf{J}_{\mathcal{X}}^{Log(\mathcal{X})}=\mathbf{J}_{l}^{-1}(\boldsymbol{\tau})JXLog(X)=Jl1(τ)J X L o g ( X ) = J r − 1 ( τ ) \mathbf{J}_{\mathcal{X}}^{Log(\mathcal{X})}=\mathbf{J}_{r}^{-1}(\boldsymbol{\tau})JXLog(X)=Jr1(τ)
PlusJ X τ ⊕ X = A d E x p ( τ ) ∣ J τ τ ⊕ X = J l ( τ ) \mathbf{J}_{\mathcal{X}}^{\boldsymbol{\tau}\oplus\mathcal{X}}=\mathbf{Ad}_{Exp(\boldsymbol{\tau})}\mid\mathbf{J}_{\boldsymbol{\tau}}^{\boldsymbol{\tau}\oplus\mathcal{X}}=\mathbf{J}_{l}(\boldsymbol{\tau})JXτX=AdExp(τ)JττX=Jl(τ)J X X ⊕ τ = A d E x p ( τ ) − 1 ∣ J τ X ⊕ τ = J r ( τ ) \mathbf{J}_{\mathcal{X}}^{\mathcal{X}\oplus\boldsymbol{\tau}}=\mathbf{Ad}_{Exp(\boldsymbol{\tau})}^{-1}\mid\mathbf{J}_{\boldsymbol{\tau}}^{\mathcal{X}\oplus\boldsymbol{\tau}}=\mathbf{J}_{r}(\boldsymbol{\tau})JXXτ=AdExp(τ)1JτXτ=Jr(τ)
MinusJ X X ⊖ Y = − J r − 1 ( τ ) ∣ J Y X ⊖ Y = J l − 1 ( τ ) \mathbf{J}_{\mathcal{X}}^{\mathcal{X}\ominus\mathcal{Y}}=-\mathbf{J}_{r}^{-1}(\boldsymbol{\tau})\mid\mathbf{J}_{\mathcal{Y}}^{\mathcal{X}\ominus\mathcal{Y}}=\mathbf{J}_{l}^{-1}(\boldsymbol{\tau})JXXY=Jr1(τ)JYXY=Jl1(τ)J X X ⊖ Y = J r − 1 ( τ ) ∣ J Y X ⊖ Y = − J l − 1 ( τ ) \mathbf{J}_{\mathcal{X}}^{\mathcal{X}\ominus\mathcal{Y}}=\mathbf{J}_{r}^{-1}(\boldsymbol{\tau})\mid\mathbf{J}_{\mathcal{Y}}^{\mathcal{X}\ominus\mathcal{Y}}=-\mathbf{J}_{l}^{-1}(\boldsymbol{\tau})JXXY=Jr1(τ)JYXY=Jl1(τ)

公式中的伴随矩阵

对于SO3:
A d R = R \mathbf{Ad_{R}} = \mathbf{R}AdR=R
对于SE3:
M = [ R t 0 1 ] A d M = [ R ⌊ t ⌋ × R 0 R ] \begin{aligned} \mathbf{M} &= \begin{bmatrix} \mathbf{R} & \mathbf{t}\\ \mathbf{0} & 1 \end{bmatrix} \\ \mathbf{Ad_{M}} &= \begin{bmatrix} \mathbf{R} & \left \lfloor \mathbf{t} \right \rfloor_{\times}\mathbf{R} \\ \mathbf{0} & \mathbf{R} \end{bmatrix} \end{aligned}MAdM=[R0t1]=[R0t×RR]

公式中的左右雅克比 J r \mathbf{J}_rJrJ l \mathbf{J}_lJl

对于SO3:

对于SE3:


版权声明:本文为weixin_37835423原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。