数据库和缓存如何保证一致性--redis

由于引入了redis缓存,那么在数据更新时,不仅要更新数据库,而且要更新缓存,这两个更新操作存在前后的问题:
先更新数据库,再更新缓存;
先更新缓存,再更新数据库;
无论是「先更新数据库,再更新缓存」,还是「先更新缓存,再更新数据库」,这两个方案都存在并发问题,当两个请求并发更新同一条数据的时候,可能会出现缓存和数据库中的数据不一致的现象。

用旁路缓存策略解决:
更新数据时,不更新缓存,而是删除缓存中的数据。然后,到读取数据时,发现缓存中没了数据之后,再从数据库中读取数据,更新到缓存中。
写:更新数据库中的数据;删除缓存中的数据。
读:如果读取的数据命中了缓存,则直接返回数据;如果读取的数据没有命中缓存,则从数据库中读取数据,然后将数据写入到缓存,并且返回给用户。
写策略时:到底是先删除缓存,还是先更新数据库?
可以看到,先删除缓存,再更新数据库,在「读 + 写」并发的时候,还是会出现缓存和数据库的数据不一致的问题。

所以,需要先更新数据库,再删除缓存。因为缓存的写入通常要远远快于数据库的写入。
为了确保万无一失,还给缓存数据加上了「过期时间」,就算在这期间存在缓存数据不一致,有过期时间来兜底,这样也能达到最终一致。

所以新的问题来了,如何保证「先更新数据库 ,再删除缓存」这两个操作能执行成功?
重试机制。
如果应用删除缓存失败,可以从消息队列中重新读取数据,然后再次删除缓存,这个就是重试机制。当然,如果重试超过的一定次数,还是没有成功,我们就需要向业务层发送报错信息了。
如果删除缓存成功,就要把数据从消息队列中移除,避免重复操作,否则就继续重试。
订阅 MySQL binlog,再操作缓存。
「先更新数据库,再删缓存」的策略的第一步是更新数据库,那么更新数据库成功,就会产生一条变更日志,记录在 binlog 里。
于是我们就可以通过订阅 binlog 日志,拿到具体要操作的数据,然后再执行缓存删除,阿里巴巴开源的 Canal 中间件就是基于这个实现的。
Canal 模拟 MySQL 主从复制的交互协议,把自己伪装成一个 MySQL 的从节点,向 MySQL 主节点发送 dump 请求,MySQL 收到请求后,就会开始推送 Binlog 给 Canal,Canal 解析 Binlog 字节流之后,转换为便于读取的结构化数据,供下游程序订阅使用。


版权声明:本文为weixin_53344209原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。