LaTeX编辑数学公式基本语法元素
LaTeX中数学模式有两种形式:inline和display。前者是指正文插入行间数学公式,后者独立排列,可以有或没有编号。
- 行间公式(inline):用
$...$将公式括起来 - 块间公式(display):用
$$...$$将公式括起来,默认显示在行中间 - 各类希腊字母表
| 希腊字母 | 英文 | 希腊字母 | 英文 | 希腊字母 | 英文 | 希腊字母 | 英文 |
|---|---|---|---|---|---|---|---|
| α \alphaα | \alpha | θ \thetaθ | \theta | o oo | o | τ \tauτ | \tau |
| β \betaβ | \beta | ϑ \varthetaϑ | \vartheta | π \piπ | \pi | υ \upsilonυ | \upsilon |
| γ \gammaγ | \gamma | ι \iotaι | \iota | ϖ \varpiϖ | \varpi | ϕ \phiϕ | \phi |
| δ \deltaδ | \delta | κ \kappaκ | \kappa | ρ \rhoρ | \rho | φ \varphiφ | \varphi |
| ϵ \epsilonϵ | \epsilon | λ \lambdaλ | \lambda | ϱ \varrhoϱ | \varrho | χ \chiχ | \chi |
| ε \varepsilonε | \varepsilon | μ \muμ | \mu | σ \sigmaσ | \sigma | ψ \psiψ | \psi |
| ζ \zetaζ | \zeta | ν \nuν | \nu | ς \varsigmaς | \varsigma | ω \omegaω | \omega |
| η \etaη | \eta | ξ \xiξ | \xi | ||||
| Γ \GammaΓ | \Gamma | Λ \LambdaΛ | \Lambda | Σ \SigmaΣ | \Sigma | Ψ \PsiΨ | \Psi |
| Δ \DeltaΔ | \Delta | Ξ \XiΞ | \Xi | Υ \UpsilonΥ | \Upsilon | Ω \OmegaΩ | \Omega |
| Θ \ThetaΘ | \Theta | Π \PiΠ | \Pi | Φ \PhiΦ | \Phi |
上下标、根号、省略号
下标:
$x_i$--> x i x_ixi上标:
$x^2$--> x 2 x^2x2注意:上下标如果多余一个字母或者符号,需要用一对{}括起来:
- $x _ {i1}$ --> x i 1 x _ {i1}xi1
- $x^{\alpha t}$ --> x α t x ^ {\alpha t}xαt
根号:\sqrt , eg: $\sqrt[n]{5}$ --> 5 n \sqrt[n]{5}n5
省略号:\dots \cdots 分别表示 … \dots…, ⋯ \cdots⋯
运算符
基本运算符:+ - * /等可以直接输入,其他特殊的有:
\pm \times \div \cdot \cap \cup \geq \leq \neq \approx \equix ± \pm± × \times× ÷ \div÷ ⋅ \cdot⋅ ∩ \cap∩ ∪ \cup∪ ≥ \geq≥ ≤ \leq≤ ≠ \neq= ≈ \approx≈ ≡ \equiv≡ 求和:
$\sum_1^n$: ∑ 1 n \sum_1^n∑1n累乘:
$\prod_{n=1}^{99}x_n$:∏ n = 1 99 x n \prod_{n=1}^{99}x_n∏n=199xn积分:
$\int_1^n$: ∫ 1 n \int_1^n∫1n极限:
- \lim\limits _ {x \to \infty} : lim x → 0 \lim\limits _ {x \to 0}x→0lim
分数
分数的表示:\frac{}{},如$\frac{3}{8}$ ==> 3 8 \frac{3}{8}83
矩阵和行列式
矩阵
==$$\begin{matrix}…\end{matrix}$$,使用&分隔同行元素,\\表示换行:
示例:
$$
\begin{matrix}
1&x&x^2\\
1&y&y^2\\
1&z&z^2\\
\end{matrix}
$$
结果:
1 x x 2 1 y y 2 1 z z 2 \begin{matrix} 1&x&x^2\\ 1&y&y^2\\ 1&z&z^2\\ \end{matrix}111xyzx2y2z2
行列式
示例:
$$
X=\left|
\begin{matrix}
x_{11} & x_{12} & \cdots & x_{1d}\\
x_{21} & x_{22} & \cdots & x_{2d}\\
\vdots & \vdots & \ddots & \vdots\\
x_{m1} & x_{m2} & \cdots & x_{md} \\
\end{matrix}
\right|
$$
结果:
X = ∣ x 11 x 12 ⋯ x 1 d x 21 x 22 ⋯ x 2 d ⋮ ⋮ ⋱ ⋮ x m 1 x m 2 ⋯ x m d ∣ X=\left| \begin{matrix} x_{11} & x_{12} & \cdots & x_{1d}\\ x_{21} & x_{22} & \cdots & x_{2d}\\ \vdots & \vdots & \ddots & \vdots\\ x_{m1} & x_{m2} & \cdots & x_{md} \\ \end{matrix} \right|X=∣∣∣∣∣∣∣∣∣x11x21⋮xm1x12x22⋮xm2⋯⋯⋱⋯x1dx2d⋮xmd∣∣∣∣∣∣∣∣∣
箭头
| 符号 | 表达式 | 符号 | 表达式 |
|---|---|---|---|
| ← \leftarrow← | \lefrarrow | ⟵ \longleftarrow⟵ | \longleftarrow |
| → \rightarrow→ | \rightarrow | ⟶ \longrightarrow⟶ | \longrightarrow |
| ↔ \leftrightarrow↔ | \leftrightarrow | ⟷ \longleftrightarrow⟷ | \longleftrightarrow |
| ⇐ \Leftarrow⇐ | \Leftarrow | ⟸ \Longleftarrow⟸ | \Longleftarrow |
| ⇒ \Rightarrow⇒ | \Rightarrow | ⟹ \Longrightarrow⟹ | \Longrightarrow |
| ⇔ \Leftrightarrow⇔ | \Leftrightarrow | ⟺ \Longleftrightarrow⟺ | \Longleftrightarrow |
方程式
$$
\begin{equation}
E=mc^2
\end{equation}
$$
KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ E=mc^2 \end{eq…
分隔符
各种括号用 () [] { } \langle\rangle 等命令表示,注意花括号通常用来输入命令和环境的参数,所以在数学公式中它们前面要加 \。可以在上述分隔符前面加 \big \Big \bigg \Bigg 等命令来调整大小。
$$
\max \limits_{a<x<b} \Bigg\{f(x)\Bigg\}
$$
max a < x < b { f ( x ) } \max \limits_{a<x<b} \Bigg\{f(x)\Bigg\}a<x<bmax{f(x)}
分段函数
$$
f(n) =
\begin{cases}
n/2, & \text {if $n$ is even}\\
3n+1, & \text {if $n$ is odd}
\end{cases}
$$
f ( n ) = { n / 2 , if n is even 3 n + 1 , if n is odd f(n) = \begin{cases} n/2, & \text {if $n$ is even}\\ 3n+1, & \text {if $n$ is odd} \end{cases}f(n)={n/2,3n+1,if n is evenif n is odd
方程组
$$
\left\{
\begin{array}{c}
a_1x+b_1y+c_1z=d_1\\
a_2x+b_2y+c_2z=d_2\\
a_3x+b_3y+c_3z=d_3
\end{array}
\right. # 注意right后面有个小数点
$$
{ a 1 x + b 1 y + c 1 z = d 1 a 2 x + b 2 y + c 2 z = d 2 a 3 x + b 3 y + c 3 z = d 3 \left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1\\ a_2x+b_2y+c_2z=d_2\\ a_3x+b_3y+c_3z=d_3 \end{array} \right.⎩⎨⎧a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3
案例
线性模型
$$h(\theta)=\sum_{j=0}^n \theta_j x_j$$
h ( θ ) = ∑ j = 0 n θ j x j h(\theta)=\sum_{j=0}^n \theta_j x_jh(θ)=j=0∑nθjxj
均方误差
$$J(\theta) = \frac{1}{2m} \sum_{i=0}^m (y^i-h_\theta (x^i))^2$$
J ( θ ) = 1 2 m ∑ i = 0 m ( y i − h θ ( x i ) ) 2 J(\theta) = \frac{1}{2m} \sum_{i=0}^m (y^i-h_\theta (x^i))^2J(θ)=2m1i=0∑m(yi−hθ(xi))2
批量梯度下降
$$
\frac{\partial J(\theta)}{\partial\theta_j} = -\frac{1}{m}\sum_{i=0}^m (y^i - h_\theta (x^i))x^i_j
$$
∂ J ( θ ) ∂ θ j = − 1 m ∑ i = 0 m ( y i − h θ ( x i ) ) x j i \frac{\partial J(\theta)}{\partial\theta_j} = -\frac{1}{m}\sum_{i=0}^m (y^i - h_\theta (x^i))x^i_j∂θj∂J(θ)=−m1i=0∑m(yi−hθ(xi))xji
推导过程:
$$
\begin{align}
\frac{\partial J(\theta)}{\partial \theta_j}
& = - \frac{1}{m} \sum_{i=0}^m (y^i-h_\theta(x^i))\frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i))\\
& = -\frac{1}{m}\sum_{i=0}^m(y^i-h_\theta(x^i))\frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_j x^i_j - y^i)\\
& = - \frac{1}{m}\sum_{i=0}^m(y^i-h_\theta (x^i))x^i_j
\end{align}
$$
∂ J ( θ ) ∂ θ j = − 1 m ∑ i = 0 m ( y i − h θ ( x i ) ) ∂ ∂ θ j ( y i − h θ ( x i ) ) = − 1 m ∑ i = 0 m ( y i − h θ ( x i ) ) ∂ ∂ θ j ( ∑ j = 0 n θ j x j i − y i ) = − 1 m ∑ i = 0 m ( y i − h θ ( x i ) ) x j i \begin{aligned} \frac{\partial J(\theta)}{\partial \theta_j} & = - \frac{1}{m} \sum_{i=0}^m (y^i-h_\theta(x^i))\frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i))\\ & = -\frac{1}{m}\sum_{i=0}^m(y^i-h_\theta(x^i))\frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_j x^i_j - y^i)\\ & = - \frac{1}{m}\sum_{i=0}^m(y^i-h_\theta (x^i))x^i_j \end{aligned}∂θj∂J(θ)=−m1i=0∑m(yi−hθ(xi))∂θj∂(yi−hθ(xi))=−m1i=0∑m(yi−hθ(xi))∂θj∂(j=0∑nθjxji−yi)=−m1i=0∑m(yi−hθ(xi))xji
CSDN使用的是KaTeX(latex的渲染器),不支持align,但可以用aligned达到同样的目的
引用:
https://www.cnblogs.com/Sinte-Beuve/p/6160905.html
https://blog.csdn.net/happyday_d/article/details/83715440