Keras基础自学十五(学习率线性衰减)

from sklearn import datasets
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from keras.optimizers import SGD


# 导入数据
dataset = datasets.load_iris()

x = dataset.data
Y = dataset.target

# 设定随机种子
seed = 7
np.random.seed(seed)

# 构建模型函数
def create_model(init='glorot_uniform'):
    # 构建模型
    model = Sequential()
    model.add(Dense(units=4, activation='relu', input_dim=4, kernel_initializer=init))
    model.add(Dense(units=6, activation='relu', kernel_initializer=init))
    model.add(Dense(units=3, activation='softmax', kernel_initializer=init))

    #模型优化
    learningRate = 0.1
    momentum = 0.9
    decay_rate = 0.005
    sgd = SGD(lr=learningRate, momentum=momentum, decay=decay_rate, nesterov=False)

    # 编译模型
    model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])

    return model

epochs = 200
model = KerasClassifier(build_fn=create_model, epochs=epochs, batch_size=5, verbose=1)
model.fit(x, Y)

 


版权声明:本文为gamblerofdestinyR14原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。