Yolov5(v6.1)数据增强方式解析

请添加图片描述


?想了解更多YOLO系列算法更多进阶教程欢迎订阅我的专栏?

基础不好的同学可以试试看一下我的《目标检测蓝皮书》?,里面包含超多目标检测实用知识,想速通目标检测,看这本就对了!

想了解YOLO系列算法进阶教程的同学可以关注这个专栏YOLOv5/v7 进阶实战 | 安卓部署 | PyQt5页面 | 剪枝✂️ | 蒸馏⚗️ | Flask Web部署 | 改进教程,里面包含多种手把手的部署压缩教程,除此之外还有大量的改进~


Yolov5提供了很多种数据增强的方式,一些基本的缩放、裁剪、旋转等我在之前的博文里介绍过了,这篇博文就主要讨论一下Mosaic数据增强


前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站


Mosaic数据增强概念

要获得一个表现良好的神经网络模型,往往需要大量的数据作支撑,然而获取新的数据这项工作往往需要花费大量的时间与人工成本。使用数据增强技术,可以充分利用计算机来生成数据,增加数据量,如采用缩放、平移、旋转、色彩变换等方法增强数据,数据增强的好处是能够增加训练样本的数量,同时添加合适的噪声数据,能够提高模型的泛化力。
在 YOLOv5 中除了使用最基本的数据增强方法外,还使用了 Mosaic 数据增强方法,其主要思想就是将 4 张图片进行随机裁剪、缩放后,再随机排列拼接形成一张图片,实现丰富数据集的同时,增加了小样本目标,提升网络的训练速度。在进行归一化操作时会一次性计算 4 张图片的数据,因此模型对内存的需求降低。Mosaic 数据增强的流程如图所示。
在这里插入图片描述
yolov5有关数据增强的参数都写到了data/hyps/hyp.scratch-med.yaml文件里,如果想关闭mosaic数据增强就直接可以把mosaic的参数设置为0

hsv_h: 0.015  # image HSV-Hue augmentation (fraction)色相
hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)饱和度
hsv_v: 0.4  # image HSV-Value augmentation (fraction)亮度
degrees: 0.0  # image rotation (+/- deg)旋转角度
translate: 0.1  # image translation (+/- fraction)
scale: 0.5  # image scale (+/- gain)
shear: 0.0  # image shear (+/- deg)
perspective: 0.0  # image perspective (+/- fraction), range 0-0.001
flipud: 0.0  # image flip up-down (probability)
fliplr: 0.5  # image flip left-right (probability)

mosaic: 1.0  # image mosaic (probability)

mixup: 0.0  # image mixup (probability)
copy_paste: 0.0  # segment copy-paste (probability)

但是我在源码中看到了两种mosaic数据增强代码,一个是4-mosaic数据增强,另一个是9-mosaic数据增强
如果想换成9-mosaic数据增强可以将load_mosaic9()改成oad_mosaic(),然后将原本的load_mosaic()注释掉
或者干脆把两个名字换一下

 def load_mosaic(self, index):
        # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
        labels4, segments4 = [], []
        s = self.img_size
        yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border)  # mosaic center x, y
        indices = [index] + random.choices(self.indices, k=3)  # 3 additional image indices
        random.shuffle(indices)
        for i, index in enumerate(indices):
            # Load image
            img, _, (h, w) = self.load_image(index)

            # place img in img4
            if i == 0:  # top left
                img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
                x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
            elif i == 1:  # top right
                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
            elif i == 2:  # bottom left
                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
            elif i == 3:  # bottom right
                x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)

            img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
            padw = x1a - x1b
            padh = y1a - y1b

            # Labels
            labels, segments = self.labels[index].copy(), self.segments[index].copy()
            if labels.size:
                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)  # normalized xywh to pixel xyxy format
                segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
            labels4.append(labels)
            segments4.extend(segments)

        # Concat/clip labels
        labels4 = np.concatenate(labels4, 0)
        for x in (labels4[:, 1:], *segments4):
            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
        # img4, labels4 = replicate(img4, labels4)  # replicate

        # Augment
        img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
        img4, labels4 = random_perspective(img4, labels4, segments4,
                                           degrees=self.hyp['degrees'],
                                           translate=self.hyp['translate'],
                                           scale=self.hyp['scale'],
                                           shear=self.hyp['shear'],
                                           perspective=self.hyp['perspective'],
                                           border=self.mosaic_border)  # border to remove

        return img4, labels4
    def load_mosaic9(self, index):
        # YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
        labels9, segments9 = [], []
        s = self.img_size
        indices = [index] + random.choices(self.indices, k=8)  # 8 additional image indices
        random.shuffle(indices)
        hp, wp = -1, -1  # height, width previous
        for i, index in enumerate(indices):
            # Load image
            img, _, (h, w) = self.load_image(index)

            # place img in img9
            if i == 0:  # center
                img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
                h0, w0 = h, w
                c = s, s, s + w, s + h  # xmin, ymin, xmax, ymax (base) coordinates
            elif i == 1:  # top
                c = s, s - h, s + w, s
            elif i == 2:  # top right
                c = s + wp, s - h, s + wp + w, s
            elif i == 3:  # right
                c = s + w0, s, s + w0 + w, s + h
            elif i == 4:  # bottom right
                c = s + w0, s + hp, s + w0 + w, s + hp + h
            elif i == 5:  # bottom
                c = s + w0 - w, s + h0, s + w0, s + h0 + h
            elif i == 6:  # bottom left
                c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
            elif i == 7:  # left
                c = s - w, s + h0 - h, s, s + h0
            elif i == 8:  # top left
                c = s - w, s + h0 - hp - h, s, s + h0 - hp

            padx, pady = c[:2]
            x1, y1, x2, y2 = (max(x, 0) for x in c)  # allocate coords

            # Labels
            labels, segments = self.labels[index].copy(), self.segments[index].copy()
            if labels.size:
                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady)  # normalized xywh to pixel xyxy format
                segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
            labels9.append(labels)
            segments9.extend(segments)

            # Image
            img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:]  # img9[ymin:ymax, xmin:xmax]
            hp, wp = h, w  # height, width previous

        # Offset
        yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border)  # mosaic center x, y
        img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]

        # Concat/clip labels
        labels9 = np.concatenate(labels9, 0)
        labels9[:, [1, 3]] -= xc
        labels9[:, [2, 4]] -= yc
        c = np.array([xc, yc])  # centers
        segments9 = [x - c for x in segments9]

        for x in (labels9[:, 1:], *segments9):
            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
        # img9, labels9 = replicate(img9, labels9)  # replicate

        # Augment
        img9, labels9 = random_perspective(img9, labels9, segments9,
                                           degrees=self.hyp['degrees'],
                                           translate=self.hyp['translate'],
                                           scale=self.hyp['scale'],
                                           shear=self.hyp['shear'],
                                           perspective=self.hyp['perspective'],
                                           border=self.mosaic_border)  # border to remove

        return img9, labels9

最后放上我在实际训练过程中的一些Mosaic数据增强后的图片,这几张是4-mosaic数据增强
请添加图片描述
请添加图片描述
请添加图片描述


这几张是9-mosaic数据增强
请添加图片描述
请添加图片描述
请添加图片描述


本人更多YOLOv5实战内容导航???

  1. 手把手带你调参Yolo v5 (v6.2)(推理)?强烈推荐

  2. 手把手带你调参Yolo v5 (v6.2)(训练)?

  3. 手把手带你调参Yolo v5 (v6.2)(验证)

  4. 如何快速使用自己的数据集训练Yolov5模型

  5. 手把手带你Yolov5 (v6.2)添加注意力机制(一)(并附上30多种顶会Attention原理图)?强烈推荐?新增8种

  6. 手把手带你Yolov5 (v6.2)添加注意力机制(二)(在C3模块中加入注意力机制)

  7. Yolov5如何更换激活函数?

  8. Yolov5如何更换BiFPN?

  9. Yolov5 (v6.2)数据增强方式解析

  10. Yolov5更换上采样方式( 最近邻 / 双线性 / 双立方 / 三线性 / 转置卷积)

  11. Yolov5如何更换EIOU / alpha IOU / SIoU?

  12. Yolov5更换主干网络之《旷视轻量化卷积神经网络ShuffleNetv2》

  13. YOLOv5应用轻量级通用上采样算子CARAFE

  14. 空间金字塔池化改进 SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC / SPPFCSPC?

  15. 用于低分辨率图像和小物体的模块SPD-Conv

  16. GSConv+Slim-neck 减轻模型的复杂度同时提升精度?

  17. 头部解耦 | 将YOLOX解耦头添加到YOLOv5 | 涨点杀器?

  18. Stand-Alone Self-Attention | 搭建纯注意力FPN+PAN结构?

  19. YOLOv5模型剪枝实战?

  20. YOLOv5知识蒸馏实战?

  21. YOLOv7知识蒸馏实战?

  22. 改进YOLOv5 | 引入密集连接卷积网络DenseNet思想 | 搭建密集连接模块?



版权声明:本文为weixin_43694096原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。