python kmeans聚类 中心点_python – KMeans聚类后的聚类点(scikit learn)

例如

import numpy as np

from sklearn.cluster import KMeans

from sklearn import datasets

iris = datasets.load_iris()

X = iris.data

y = iris.target

estimator = KMeans(n_clusters=3)

estimator.fit(X)

你可以得到每个点的集群

estimator.labels_

日期:

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1,

2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2,

1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1], dtype=int32)

然后获取每个集群的点数索引

{i: np.where(estimator.labels_ == i)[0] for i in range(estimator.n_clusters)}

日期:

{0: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]),

1: array([ 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,

78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,

91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 106, 113, 114,

119, 121, 123, 126, 127, 133, 138, 142, 146, 149]),

2: array([ 52, 77, 100, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112,

115, 116, 117, 118, 120, 122, 124, 125, 128, 129, 130, 131, 132,

134, 135, 136, 137, 139, 140, 141, 143, 144, 145, 147, 148])}

编辑

如果要将X中的点数组用作值而不是索引数组:

{i: X[np.where(estimator.labels_ == i)] for i in range(estimator.n_clusters)}


版权声明:本文为weixin_31091881原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。