python绘制直方图的函数_(六)pyplot基础图表函数(学习笔记)|python数据分析与展示...

1.pyplot基础图表函数概述

2.pyplot图饼的绘制

3.pyplot直方图的绘制

4.pyplot极坐标图的绘制

5.pyplot散点图的绘制

6.单元小结

[网页链接【Python数据分析与展示】.MOOC. 北京理工大学

https://www.bilibili.com/video/av10101509/?from=search&seid=8584212945516406240#page=27)

最近更新:2018-01-29

1.pyplot基础图表函数概述

重点是选什么样的图形与数据相对应

bQBzyy.png

rAnEzi.png

y6zAJr.png

2.pyplot图饼的绘制

2.1扁形饼图

import matplotlib.pyplot as plt

labels="Frogs","Hogs","Dogs","Logs"

sizes=[35,30,45,10]

explode=(0,0.1,0,0)

plt.pie(sizes,explode=explode,labels=labels,autopct="%1.1f%%",shadow=False,startangle=99)

plt.show()

NJbyye.png

2.2圆饼图

扁形之间的区别是,增加了一行代码,plt.axis(“equal”)

import matplotlib.pyplot as plt

labels="Frogs","Hogs","Dogs","Logs"

sizes=[35,30,45,10]

explode=(0,0.1,0,0)

plt.pie(sizes,explode=explode,labels=labels,autopct="%1.1f%%",shadow=False,startangle=99)

plt.axis("equal")

plt.show()

VVFbUr.png

3.pyplot直方图的绘制

import matplotlib.pyplot as plt

import numpy as np

np.random.seed(0)

mu,sigma=100,20

a=np.random.normal(mu,sigma,size=100)

plt.hist(a,20,normed=1,histtype="stepfilled",facecolor="b",alpha=0.75)

plt.title("Histogram")

plt.show()

NNfQra.png

将hist代码中的hist由原来的20分别改为10,40

q2U7R3.png

hist改为10的代码及图像

import matplotlib.pyplot as plt

import numpy as np

np.random.seed(0)

mu,sigma=100,20

a=np.random.normal(mu,sigma,size=100)

plt.hist(a,10,normed=1,histtype="stepfilled",facecolor="b",alpha=0.75)

plt.title("Histogram")

plt.show()

Bf2iQv.png

hist改为40的代码及图像

import matplotlib.pyplot as plt

import numpy as np

np.random.seed(0)

mu,sigma=100,20

a=np.random.normal(mu,sigma,size=100)

plt.hist(a,40,normed=1,histtype="stepfilled",facecolor="b",alpha=0.75)

plt.title("Histogram")

plt.show()

UFZZvy.png

理解直方图最关键的地方就是理解直方图的个数.

eaQjUr.png

4.pyplot极坐标图的绘制

import matplotlib.pyplot as plt

import numpy as np

N=20

theta=np.linspace(0.0,2*np.pi,N,endpoint=False)

radii=10*np.random.rand(N)

width=np.pi/4*np.random.rand(N)

ax=plt.subplot(111,projection="polar")

bars=ax.bar(theta,radii,width=width,bottom=0.0)

for r,bar in zip(radii,bars):

bar.set_facecolor(plt.cm.viridis(r/10.))

bar.set_alpha(0.5)

plt.show()

y2iu6v.png

ii67Rn.png

最关键的代码行ax

修改参数,将n由原来的20改为10,pi/4改为pi/2,

VnMRFb.png

import matplotlib.pyplot as plt

import numpy as np

N=10

theta=np.linspace(0.0,2*np.pi,N,endpoint=False)

radii=10*np.random.rand(N)

width=np.pi/2*np.random.rand(N)

ax=plt.subplot(111,projection="polar")

bars=ax.bar(theta,radii,width=width,bottom=0.0)

for r,bar in zip(radii,bars):

bar.set_facecolor(plt.cm.viridis(r/10.))

bar.set_alpha(0.5)

plt.show()

IjQza2.png

5.pyplot散点图的绘制

import matplotlib.pyplot as plt

import numpy as np

fig,ax=plt.subplots()

ax.plot(10*np.random.randn(100),10*np.random.randn(100),"o")

ax.set_title("Simple Scatter")

plt.show()

6zEFf2.png

6.单元小结

VfAvMv.png