常用微分近似公式

泰勒展开(在x 0 x_0x0处展开):
f ( x ) = f ( x 0 ) + f ’ ( x 0 ) 1 ! ( x − x 0 ) 1 + . . . + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x 0 ) f\left( x \right) =f\left( x_0 \right) +\frac{f’\left( x_0 \right)}{1!}\left( x-x_0 \right) ^1+...+\frac{f^{\left( n \right)}\left( x_0 \right)}{n!}\left( x-x_0 \right) ^n+R_n\left( x_0 \right)f(x)=f(x0)+1!f(x0)(xx0)1+...+n!f(n)(x0)(xx0)n+Rn(x0)

f ( x ) f\left( x \right)f(x) 在点 x 0 = x x_0=xx0=x 附近的近似值:
f ( x 0 + △ x ) ≈ f ( x 0 ) + f ’ ( x 0 ) ⋅ △ x ∣ △ x ∣ 非 常 小 f\left( x_0+\bigtriangleup x \right) \approx f\left( x_0 \right) +f’\left( x_0 \right) \cdot \bigtriangleup x \\ |\bigtriangleup x| 非常小f(x0+x)f(x0)+f(x0)xx

常用近似公式:
(1):e x ≈ ( 1 + x ) e^x\approx \left( 1+x \right)ex(1+x)
(2):sin ⁡ x ≈ x \sin x\approx xsinxx
(3):tan ⁡ x ≈ x \tan x\approx xtanxx
(4):a r c tan ⁡ x ≈ x \mathrm{arc}\tan x\approx xarctanxx
(5):( 1 + x ) n ≈ 1 + n x \left( 1+x \right) ^n\approx 1+nx(1+x)n1+nx
(6):cos ⁡ x ≈ 1 − x 2 2 \cos x\approx 1-\frac{x^2}{2}cosx12x2
(7):ln ⁡ ( 1 + x ) ≈ x \ln \left( 1+x \right) \approx xln(1+x)x
(8):1 + x n ≈ 1 + x n \sqrt[n]{1+x}\approx 1+\frac{x}{n}n1+x1+nx


版权声明:本文为liujinghua16原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。