如图判断点P PP是否在矩形P 1 P 2 P 3 P 4 P_{1}P_{2}P_{3}P_{4}P1P2P3P4内部?
从上图可以看出:
点 P {P}P 位于矩形内部 ⇔ \Leftrightarrow⇔ { ∡ P P 1 P 4 ≤ 90 ∡ P P 1 P 2 ≤ 90 ∡ P P 3 P 4 ≤ 90 ∡ P P 3 P 2 ≤ 90 \left\{\begin{aligned} \measuredangle PP_{1}P_{4}\leq90\\ \measuredangle PP_{1}P_{2}\leq90\\ \measuredangle PP_{3}P_{4}\leq90 \\ \measuredangle PP_{3}P_{2}\leq90 \end{aligned}\right.⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧∡PP1P4≤90∡PP1P2≤90∡PP3P4≤90∡PP3P2≤90 ⇔ \Leftrightarrow⇔ { P 1 P ⃗ ⋅ P 1 P 4 ⃗ ≥ 0 P 1 P ⃗ ⋅ P 1 P 2 ⃗ ≥ 0 P 3 P ⃗ ⋅ P 3 P 4 ⃗ ≥ 0 P 3 P ⃗ ⋅ P 3 P 2 ⃗ ≥ 0 \left\{\begin{aligned} \vec{P_{1}P} \cdot \vec{P_{1}P_{4}} \geq 0\\ \vec{P_{1}P} \cdot \vec{P_{1}P_{2}} \geq 0\\ \vec{P_{3}P} \cdot \vec{P_{3}P_{4}} \geq 0\\ \vec{P_{3}P} \cdot \vec{P_{3}P_{2}} \geq 0\\ \end{aligned}\right.⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧P1P⋅P1P4≥0P1P⋅P1P2≥0P3P⋅P3P4≥0P3P⋅P3P2≥0
所以,点P PP在矩形P 1 P 2 P 3 P 4 P_{1}P_{2}P_{3}P_{4}P1P2P3P4内部的条件为:
P 1 P ⃗ ⋅ P 1 P 4 ⃗ ≥ 0 \vec{P_{1}P} \cdot \vec{P_{1}P_{4}} \geq 0P1P⋅P1P4≥0&&P 1 P ⃗ ⋅ P 1 P 2 ⃗ ≥ 0 \vec{P_{1}P} \cdot \vec{P_{1}P_{2}} \geq 0P1P⋅P1P2≥0&&P 3 P ⃗ ⋅ P 3 P 4 ⃗ ≥ 0 \vec{P_{3}P} \cdot \vec{P_{3}P_{4}} \geq 0P3P⋅P3P4≥0&&P 3 P ⃗ ⋅ P 3 P 2 ⃗ ≥ 0 \vec{P_{3}P} \cdot \vec{P_{3}P_{2}} \geq 0P3P⋅P3P2≥0
判断点是否在矩形内
版权声明:本文为hhjhh76原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。