pandas将某列复制到另一个表_Python Pandas将列从df复制到另一个if值sam

您可以通过dict使用^{}:d = df2.set_index('ID')['F'].to_dict()

print (d)

{1: 'c1', 2: 'c2', 3: 'c3'}

df1['F'] = df1['ID'].map(d)

print (df1)

ID A B C F

0 1 x y z c1

1 1 x y z c1

2 2 x y z c2

3 2 x y z c2

4 2 x y z c2

5 3 x y z c3

另一种解决方案是map,方法是Series:

^{pr2}$

计时:#[60000 rows x 5 columns]

df1 = pd.concat([df1]*10000).reset_index(drop=True)

In [115]: %timeit pd.merge(df1, df2[['ID', 'F']],how='left')

100 loops, best of 3: 11.1 ms per loop

In [116]: %timeit df1['ID'].map(df2.set_index('ID')['F'])

100 loops, best of 3: 3.18 ms per loop

In [117]: %timeit df1['ID'].map(df2.set_index('ID')['F'].to_dict())

100 loops, best of 3: 3.36 ms per loop

In [118]: %timeit df1['ID'].map({k:v for k, v in df2[['ID', 'F']].as_matrix()})

100 loops, best of 3: 3.44 ms per loop

In [119]: %%timeit

...: df2.index = df2['ID']

...: df1['F1'] = df1['ID'].map(df2['F'])

...:

100 loops, best of 3: 3.33 ms per loop


版权声明:本文为weixin_39678103原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。