基本概念
- SVD
奇异值分解。将矩阵进行压缩。大幅度减少内存消耗,提高运行速度。
应用
数据降维、推荐算法、自然语言处理
算法核心
A = U ∑ V t A=U\sum V^tA=U∑Vt
对于任意矩阵A,我们总能够将其分解位三个矩阵U 、 ∑ 、 V t U、\sum、V^tU、∑、Vt
- U为酉矩阵
- ∑ \sum∑为对角阵
- V t V^tVt为酉矩阵
酉矩阵
- 满足A T = A − 1 A^T=A^{-1}AT=A−1
分解过程
将原始矩阵分解为三个矩阵
推导过程
- A = U ∑ V t A=U\sum V^tA=U∑Vt
- A t = ( U ∑ V t ) T = V ( U ∑ ) T = V ∑ t U T A^t=(U\sum V^t)^T=V(U\sum)^T=V\sum^tU^TAt=(U∑Vt)T=V(U∑)T=V∑tUT
结论
- A A T = U ∑ V t V ∑ T U T = U ∑ 2 U T AA^T=U\sum V^tV\sum^TU^T=U\sum^2U^TAAT=U∑VtV∑TUT=U∑2UT
- A T A = V ∑ T U T U ∑ V t = V ∑ 2 V T A^TA=V\sum^TU^TU\sum V^t=V\sum^2V^TATA=V∑TUTU∑Vt=V∑2VT
实例数据
代码演示
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
def pic_compress(k, pic_array):
global u, sigma, vt, sig, new_pic
u, sigma, vt = np.linalg.svd(pic_array)
sig = np.eye(k) * sigma[: k]
new_pic = np.dot(np.dot(u[:, :k], sig), vt[:k, :]) # 还原图像
size = u.shape[0] * k + sig.shape[0] * sig.shape[1] + k * vt.shape[1] # 压缩后大小
return new_pic, size
filename = "timg.jpg"
ori_img = np.array(Image.open(filename))
new_img, size = pic_compress(100, ori_img)
print("original size:" + str(ori_img.shape[0] * ori_img.shape[1]))
print("compress size:" + str(size))
fig, ax = plt.subplots(1, 2)
ax[0].imshow(ori_img, cmap='gray')
ax[0].set_title("before compress")
ax[1].imshow(new_img, cmap='gray')
ax[1].set_title("after compress")
plt.show()
效果展示
original size:1365760
compress size:244700
版权声明:本文为m0_50661271原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。