限流算法

https://www.infoq.cn/article/Qg2tX8fyw5Vt-f3HH673

固定窗口计数器

在这里插入图片描述
固定窗口计数器算法概念如下:

  • 将时间划分为多个窗口;
  • 在每个窗口内每有一次请求就将计数器加一;
  • 如果计数器超过了限制数量,则本窗口内所有的请求都被丢弃当时间到达下一个窗口时,计数器重置。

固定窗口计数器是最为简单的算法,但这个算法有时会让通过请求量允许为限制的两倍。考虑如下情况:限制 1 秒内最多通过 5 个请求,在第一在这里插入图片描述
个窗口的最后半秒内通过了 5 个请求,第二个窗口的前半秒内又通过了 5 个请求。这样看来就是在 1 秒内通过了 10 个请求。

滑动窗口计数器

在这里插入图片描述
滑动窗口计数器算法概念如下:

  • 将时间划分为多个区间;
  • 在每个区间内每有一次请求就将计数器加一维持一个时间窗口,占据多个区间;
  • 每经过一个区间的时间,则抛弃最老的一个区间,并纳入最新的一个区间;
  • 如果当前窗口内区间的请求计数总和超过了限制数量,则本窗口内所有的请求都被丢弃。

滑动窗口计数器是通过将窗口再细分,并且按照时间"滑动",这种算法避免了固定窗口计数器带来的双倍突发请求,但时间区间的精度越高,算法所需的空间容量就越大

漏桶算法

在这里插入图片描述
漏桶算法概念如下:

  • 将每个请求视作"水滴"放入"漏桶"进行存储;
  • “漏桶"以固定速率向外"漏"出请求来执行如果"漏桶"空了则停止"漏水”;
  • 如果"漏桶"满了则多余的"水滴"会被直接丢弃。

漏桶算法多使用队列实现,服务的请求会存到队列中,服务的提供方则按照固定的速率从队列中取出请求并执行,过多的请求则放在队列中排队或直接拒绝。

漏桶算法的缺陷也很明显,当短时间内有大量的突发请求时,即便此时服务器没有任何负载,每个请求也都得在队列中等待一段时间才能被响应。

public class LeakyDemo {
    public long timeStamp = getNowTime();
    public int capacity; // 桶的容量
    public int rate; // 水漏出的速度
    public int water; // 当前水量(当前累积请求数)
    
    public boolean grant() {
        long now = getNowTime();
        water = max(0, water - (now - timeStamp) * rate); // 先执行漏水,计算剩余水量
        timeStamp = now;
        if ((water + 1) < capacity) {
            // 尝试加水,并且水还未满
            water += 1;
            return true;
        }
        else {
            // 水满,拒绝加水
            return false;
        }
    }
}

令牌桶算法

在这里插入图片描述
令牌桶算法概念如下:

  • 令牌以固定速率生成;
  • 生成的令牌放入令牌桶中存放,如果令牌桶满了则多余的令牌会直接丢弃,当请求到达时,会尝试从令牌桶中取令牌,取到了令牌的请求可以执行;
  • 如果桶空了,那么尝试取令牌的请求会被直接丢弃。

令牌桶算法既能够将所有的请求平均分布到时间区间内,又能接受服务器能够承受范围内的突发请求,因此是目前使用较为广泛的一种限流算法

实现请参考 guava里的ratelimiter
ratelimiter源码解析
https://blog.csdn.net/weixin_39590058/article/details/108709077