matplotlib学习-2

绘制散点图

假设通过爬虫你获取到了北京2016年3,10月份每天白天的最高气温(分别位于列表a,b),那么此时如何寻找气温和随时间(天)变化的某种规律?

y_3 = [11, 17, 16, 11, 12, 11, 12, 6, 6, 7, 8, 9, 12, 15, 14, 17, 18, 21, 16, 17, 20, 14, 15, 15, 15, 19, 21, 22, 22, 22, 23]

y_10 = [26, 26, 28, 19, 21, 17, 16, 19, 18, 20, 20, 19, 22, 23, 17, 20, 21, 20, 22, 15, 11, 15, 5, 13, 17, 10, 11, 13,12, 13, 6]

from matplotlib import pyplot as plt

y_3 = [11, 17, 16, 11, 12, 11, 12, 6, 6, 7, 8, 9, 12, 15, 14, 17, 18, 21, 16, 17, 20, 14, 15, 15, 15, 19, 21, 22, 22,
       22, 23]
y_10 = [26, 26, 28, 19, 21, 17, 16, 19, 18, 20, 20, 19, 22, 23, 17, 20, 21, 20, 22, 15, 11, 15, 5, 13, 17, 10, 11, 13,
        12, 13, 6]
x_3 = range(1, 32)
x_10 = range(51, 82)

# 设置图形大小
plt.figure(figsize=(20, 8), dpi=80)

# 绘制
plt.scatter(x_3, y_3, label="3yuefen")
plt.scatter(x_10, y_10, label="10yuefen")

# 调整x轴的刻度
_x = list(x_3) + list(x_10)
_xtick_labels = ["3yue{}ri".format(i) for i in x_3]
_xtick_labels += ["10yue{}ri".format(i - 50) for i in x_10]
plt.xticks(_x[::3], _xtick_labels, rotation=45)

# 添加描述信息
plt.xlabel("time")
plt.ylabel("tempture")
plt.title("title")

# 添加图例
plt.legend(loc="upper left")

# 展示
plt.show()

在这里插入图片描述

绘制条形图

假设你获取到了2017年内地电影票房前20的电影(列表a)和电影票房数据(列表b),那么如何更加直观的展示该数据?

a=[“战狼2”,“速度与激情”,“功夫瑜伽”,“西游伏魔篇”,“变形金刚5:最后的骑士”,“摔跤吧!爸爸”,“加勒比海盗5:死无对证”,“金刚:骷颅岛”,“极限特工:终极回归”,“生哈危机6:终章”,“乘风破浪”,“神偷奶爸3”,“智取威虎山”,“大闹天竺”,“金刚狼3:殊死一战”,“蜘蛛侠:英雄归来”,“悟空传”,“银河护卫队2”,“情圣”,“新木乃伊”]

b=[56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23] 单位:亿

from matplotlib import pyplot as plt
from matplotlib import font_manager

a = ["战狼2", "速度与激情", "功夫瑜伽", "西游伏魔篇", "变形金刚5:最后的骑士",
     "摔跤吧!爸爸", "加勒比海盗5:死无对证", "金刚:骷颅岛", "极限特工:终极回归", "生哈危机6:终章",
     "乘风破浪", "神偷奶爸3", "智取威虎山", "大闹天竺", "金刚狼3:殊死一战", "蜘蛛侠:英雄归来", "悟空传", "银河护卫队2", "情圣", "新木乃伊"]

b = [56.01, 26.94, 17.53, 16.49, 15.45, 12.96, 11.8, 11.61, 11.28, 11.12, 10.49, 10.3, 8.75, 7.55, 7.32, 6.99, 6.88,
     6.86, 6.58, 6.23]

# 设置图形大小
plt.figure(figsize=(20, 8), dpi=80)
# 绘制
plt.bar(range(len(a)), b, width=0.3)

# 设置坐标轴显示的字符串
plt.xticks(range(len(a)), a, rotation=45)

# 展示
plt.show()

在这里插入图片描述

绘制横着的条形图

from matplotlib import pyplot as plt
from matplotlib import font_manager

# my_font = font_manager.FontProperties(fname="/System/Library/Fonts/Hiragino Sans GB.ttc")
a = ["战狼2", "速度与激情", "功夫瑜伽", "西游伏魔篇", "变形金刚5:最后的骑士",
     "摔跤吧!爸爸", "加勒比海盗5:死无对证", "金刚:骷颅岛", "极限特工:终极回归", "生哈危机6:终章",
     "乘风破浪", "神偷奶爸3", "智取威虎山", "大闹天竺", "金刚狼3:殊死一战", "蜘蛛侠:英雄归来", "悟空传", "银河护卫队2", "情圣", "新木乃伊"]

b = [56.01, 26.94, 17.53, 16.49, 15.45, 12.96, 11.8, 11.61, 11.28, 11.12, 10.49, 10.3, 8.75, 7.55, 7.32, 6.99, 6.88,
     6.86, 6.58, 6.23]

# 设置图形大小
plt.figure(figsize=(20, 8), dpi=80)

# 绘制
plt.barh(range(len(a)), b, height=0.3)

# 设置坐标轴显示的字符串
plt.yticks(range(len(a)), a)

# 增加网格
plt.grid(alpha=0.3)

# 展示
plt.show()

在这里插入图片描述

绘制多次条形图

假设你知道列表a中电影分别在2017-09-14(b_14),2017-09-15(b_15),2017-09-16(b_16)三天的票房,为了展示列表中电影本身的票房以及同其他电影的数据对比情况,应该如何更加直观

的呈现该数据?

a=[“猩球崛起3:终极之战”,“敦刻尔克”,“蜘蛛侠:英雄归来”,“战狼2”]

b_16=[15746,312,4497,319]

b_15=[12357,156,2045,168]

b_14=[2358,399,2358,362]

from matplotlib import pyplot as plt
from matplotlib import font_manager

# my_font = font_manager.FontProperties(fname="/System/Library/Fonts/Hiragino Sans GB.ttc")
a = ["猩球崛起3:终极之战", "敦刻尔克", "蜘蛛侠:英雄归来", "战狼2"]
b_16 = [15746, 312, 4497, 319]
b_15 = [12357, 156, 2045, 168]
b_14 = [2358, 399, 2358, 362]

x_14 = list(range(len(a)))
x_15 = [i + 0.2 for i in x_14]
x_16 = [i + 0.2 * 2 for i in x_14]

# 设置图形大小
plt.figure(figsize=(20, 8), dpi=80)

# 绘制
plt.bar(range(len(a)), b_14, width=0.2)
plt.bar(x_15, b_15, width=0.2)
plt.bar(x_16, b_16, width=0.2)

# 设置坐标轴的刻度
plt.xticks(x_15, a)

# 展示
plt.show()

在这里插入图片描述

绘制直方图

a=[131,98,125,131,124,139,117,128,108,135,138,131,102,107,114,119,128,121,142,127,130,124,101,110,116,117,110,128,128,115,99,136,126,134,95,138,117,111,78,132,124,113,150,110,117,86,95,144,105,126,130,126,130,126,116,123,106,112,138,123,83,101,99,136,123,117,86,95,114]

from matplotlib import pyplot as plt
from matplotlib import font_manager

a = [131, 98, 125, 131, 124, 139, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101,
     110, 116, 117, 110, 128, 128, 115, 99, 136, 126, 134, 95, 138, 117, 111, 78, 132, 124, 113, 150, 110, 117, 86, 95,
     144, 105, 126, 130, 126, 130, 126, 116, 123, 106, 112, 138, 123, 83, 101, 99, 136, 123, 117, 86, 95, 114, 112, 98,
     76, 86, 98, 116, 124, 135, 124, 125, 89, 83, 76]

# 计算组数
d = 3  # 组距
num_bins = max(a) - min(a) // d

# 设置图形大小
plt.figure(figsize=(20, 8), dpi=80)

# 绘制
plt.hist(a, num_bins, normed=1)

# 设置坐标轴的刻度
plt.xticks(range(min(a), max(a) + d, d))

# 增加网格
plt.grid()

# 展示
plt.show()

版权声明:本文为l13kddd原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。