DataFrame可以从结构化文件、hive表、外部数据库以及现有的RDD加载构建得到。这里主要针对从现有的RDD来构建DataFrame进行实践与解析。
Spark SQL支持将现有的RDDs转换为DataSet的两种不同的方法。
第一种方法是使用反射来推断包含特定对象类型的RDD的模式。在写Spark程序的同时,已经知道了模式,这种基于反射的方法可以使代码更简洁并且程序工作得更好。
第二种方法是通过一个编程接口来实现,这个接口允许构造一个模式,然后在存在的RDD上使用它。虽然这种方法代码较为冗长,但是它允许在运行期间之前不止列以及列的类型的情况下构造DataSet。
利用反射推断Schema
Spark SQL支持将javabean的RDD自动转换为DataFrame。使用反射获得的BeanInfo定义了表的模式。目前,Spark SQL不支持包含Map字段的javabean。但是支持嵌套的javabean和列表或数组字段。您可以创建一个实现Serializable的类并为其所有字段设置getter和setter,从而创建一个JavaBean。
1、JavaBean的创建
public static class Person implements Serializable {
private String name;
private int age;
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
}
2、官网案例
private static void runInferSchemaExample(SparkSession spark) {
// Create an RDD of Person objects from a text file
JavaRDD<Person> peopleRDD = spark.read()
.textFile("examples/src/main/resources/people.txt")
.javaRDD()
.map(line -> {
String[] parts = line.split(",");
Person person = new Person();
person.setName(parts[0]);
person.setAge(Integer.parseInt(parts[1].trim()));
return person;
});
// Apply a schema to an RDD of JavaBeans to get a DataFrame
Dataset<Row> peopleDF = spark.createDataFrame(peopleRDD, Person.class);
// Register the DataFrame as a temporary view
peopleDF.createOrReplaceTempView("people");
// SQL statements can be run by using the sql methods provided by spark
Dataset<Row> teenagersDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19");
// The columns of a row in the result can be accessed by field index
Encoder<String> stringEncoder = Encoders.STRING();
Dataset<String> teenagerNamesByIndexDF = teenagersDF.map(
(MapFunction<Row, String>) row -> "Name: " + row.getString(0),
stringEncoder);
teenagerNamesByIndexDF.show();
// +------------+
// | value|
// +------------+
// |Name: Justin|
// +------------+
// or by field name
Dataset<String> teenagerNamesByFieldDF = teenagersDF.map(
(MapFunction<Row, String>) row -> "Name: " + row.<String>getAs("name"),
stringEncoder);
teenagerNamesByFieldDF.show();
// +------------+
// | value|
// +------------+
// |Name: Justin|
// +------------+
// $example off:schema_inferring$
}
编程指定Schema
如果不能提前定义JavaBean类(例如,记录的结构是在字符串中编码的,或者将对文本数据集进行解析,而对不同的用户将对字段进行不同的投影),那么可以通过三个步骤以编程方式创建DataSet< Row>。
1、从原始的RDD中创建行的RDD;
2、创建由StructType表示的模式,该结构匹配步骤1中创建的RDD中的行结构。
3、通过SparkSession提供的createDataFrame方法将模式应用到行RDD中。
官网案例
private static void runProgrammaticSchemaExample(SparkSession spark) {
// 1、创建一个RDD
JavaRDD<String> peopleRDD = spark.sparkContext()
.textFile("examples/src/main/resources/people.txt", 1)
.toJavaRDD();
// The schema is encoded in a string
String schemaString = "name age";
// 2、根据schema的字符串生成schema
List<StructField> fields = new ArrayList<>();
for (String fieldName : schemaString.split(" ")) {
StructField field = DataTypes.createStructField(fieldName, DataTypes.StringType, true);
fields.add(field);
}
StructType schema = DataTypes.createStructType(fields);
// 3、将JavaRDD<String>的记录转换成JavaRDD<Row>
JavaRDD<Row> rowRDD = peopleRDD.map((Function<String, Row>) record -> {
String[] attributes = record.split(",");
return RowFactory.create(attributes[0], attributes[1].trim());
});
///4、将 schema 应用在JavaRDD<Row> ,创建 Dataset<Row>
Dataset<Row> peopleDataFrame = spark.createDataFrame(rowRDD, schema);
// Creates a temporary view using the DataFrame
peopleDataFrame.createOrReplaceTempView("people");
// SQL can be run over a temporary view created using DataFrames
Dataset<Row> results = spark.sql("SELECT name FROM people");
// The results of SQL queries are DataFrames and support all the normal RDD operations
// The columns of a row in the result can be accessed by field index or by field name
Dataset<String> namesDS = results.map(
(MapFunction<Row, String>) row -> "Name: " + row.getString(0),
Encoders.STRING());
namesDS.show();
// +-------------+
// | value|
// +-------------+
// |Name: Michael|
// | Name: Andy|
// | Name: Justin|
// +-------------+
// $example off:programmatic_schema$
}
版权声明:本文为leen0304原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。