CCF CSP——202203-2 出行计划

问题描述

试题链接:出行计划

满分题解

此题为一般简单模拟题,题目读完,这不就是遍历一遍所有场所,根据场所需要的c个小时核酸,那么判断计划的t'是否属于[t+k, t+k+c)的范围,是则answer加一,最后输出answer,三下五除二写完,啪,提交,结果70分超时。。。

因为之前做这道题的时候是记时间做的,70分感觉也还行,当时也没有更好的优化方法,直接就做下一题了。

后面回过头来想这道题的时候,发现了可以优化时间的方法,之前的做法对于只有一个输入的时候确实很好使,但是对于输入较多的时候,每一次都需要遍历一遍所有的场所,对于同一组数据,每次输入对应的结果都是不会变化的,因此考虑以空间的代价,换时间,直接将所有可能的输入的答案全部保存下来,随后对于每个输入,只需要O(1)的时间复杂度即可获得答案。

具体实现细节如下代码

python代码

n, m, k = map(int, input().split())
max_time = 0
activities = []
for i in range(n):
    activity = list(map(int, input().split()))
    activity[0], activity[1] = max(0, activity[0] - activity[1] + 1 - k), activity[0] - k
    if activity[1] < 0:
        continue
    max_time = max(max_time, activity[1] + 2)
    activities.append(activity)

ans = [0] * max_time
for activity in activities:
    ans[activity[0]] += 1
    ans[activity[1] + 1] -= 1
for i in range(1, max_time):
    ans[i] += ans[i - 1]
for i in range(m):
    inp = int(input())
    print(ans[inp] if inp < max_time else 0)

写在最后

 祝大家CSP认证都400+

 祝大家CSP认证都400+

 祝大家CSP认证都400+


版权声明:本文为qq_40477864原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。