电商平台大数据分析指标

一、五大关键数据分析指标

1.1活跃用户量

活跃用户量是一个基本的指标,有 DAU(日活跃用户)、WAU(周活跃用户)和 MAU(月活跃用户)三个层次;

1.2转化

转化是一个非常重要的指标,电商运营需要关注主路径、次路径甚至精细到每一个品类 / SKU 的转化率;

1.3留存

留存要从不同的时间周期上研究,包括次日留存率、3 日、7 日、30 日留存;

1.4复购

复购则要从 3 个角度去看,复购用户量、复购率和复购金额比;

1.5GMV

GMV 是最重要的指标,我们的运营最终是围绕这个来进行的。GMV = UV *转化率*客单价。

二、三条重要思路

2.1商品运营

在商品运营中,尤其是首页商品更新速度快,我们要格外重视转化,甚至要精确到不同时间区间、不同位置、不同商品的转化率。然后根据转化率,结合业务经验,不断调整运营策略。然而目前,即使是大型的电商网站,也没有很好地做到这一点,对于每个商品品类 / SKU 的转化率的分析仍存在一定的空缺。

商品运营有一个非常大的优势:投入低,见效快,效果明显,商品运营的本质是通过不同坑位、不同活动、不同商品的分析来提高我们的转化率和 GMV 。

典型的漏斗:首页——活动页——商品详情页——支付完成。

我们更需要基于三个关键转化“UV-点击”、“点击-加入购物车”、“购物车-支付成功”

电商网站的运营节奏非常快,尤其是活动专区的“秒杀”、“抢购”等活动,需要实时监测 SKU 的更新变化。

2.2 用户运营

随着互联网用户增长速度的放缓,用户体验愈发重要,之前无目的的短信推送、APP 通知有可能使用户厌烦,破坏用户的体验;甚至可能导致用户退订、卸载。精细化运营的情况下,做好用户运营主要从两个角度出发:一是找到用户留存的关键点;二是采取差异化的运营策略,区分不同的用户群体,对不同群体采取差异化的运营方式。

1. 找到用户增长的“魔法数字”

留住一个客户的成本远远小于重新获取一个客户的成本,所以留存至关重要,它关系着一个平台能否持续健康发展。

留存曲线分成三个周期,开始是震荡期和选择期,经过这两个周期,如果用户能够留下来,就会进入一个相对平稳期。 在硅谷流向的 growth hacking 中,经常提到 magic number(魔法数字)。

以某电商平台为例,在该网站上 7 天内完成 3 次购买的用户的留存度(红色)是一般用户(绿色)的 4 倍左右,因此在一周内让用户完成 3 次购买就是他的魔法数字。

2. 差异化的运营策略

不同用户的活跃度、商品偏好、购买决策阶段都各异,我们需要采取差异化的运营策略。差异化的运营策略主要从3个角度出发:基于用户的活跃度、基于用户对不同商品的偏好、基于用户所处的决策阶段。

基于用户的活跃程度,我们可以将用户大致分成“流失用户”、“低频活跃用户”和“高频活跃用户”。一般情况下,一个用户 30 天甚至更久没有登录你的平台,我们基本可以认为该用户流失了。对于流失客户,是否要考虑采取召回策略。30 天内活跃 10 天以上的高度活跃用户,我们是否可以向其推荐更多精准的商品。

其次基于用户对不同商品的偏好,我们采用用户分群,将用户区分成“美妆类”、“鞋帽类”、“数码类”、“书籍类”等不同群体,然后精准推送新品。

最后,基于用户购买决策的不同阶段。一个标准的购买流程,先后经历“首页浏览/搜索——浏览商品详情页——商品对比——加入购物车——支付成功”等几个环节,用户在每一个节点都处于不同的决策阶段。我们从维度(属性数据)和指标(行为数据)出发,对用户分群,如“领取了优惠券,但是未使用”的用户,采取精准的推送。我们从 GrowingIO 提供的 API 导出这些用户的 ID 和属性,然后对接企业内容的 CRM 或者 EDM 进行精准的推送和提醒,刺激用户的转化。

2.3 产品运营

目前电商产品的设计总体成熟、界面布局类似,我们主要结合用户的使用情况去优化产品。我们的思路主要是:优化产品不同路径的转化率,注重用户点评的管理。

1. 优化产品,从转化做起

一个购买行为可能有多种转化路径:

1)首页——商品——订单转化

2)首页——商品列表——详情页——订单转化

3)首页——搜索——商品列表——详情页——订单转化

4)首页——单坑位Banner——活动页——详情页——订单转化

上面列举就是漏斗分析模型

如果我们发现“加入购物车”到“支付成功”的转化率不到 1/3,偏低,需要排查具体的问题出在哪里。

一旦觉察到问题可能存在,我们就需要层层下钻,直接抵达问题的核心。我们通过用户分群,将“提交订单,但是未支付完成”的用户全部筛选出来。然后抽出 3-5 个符合条件的用户,借助“用户细查”仔细观看每个用户的操作流程,一般就能发现问题了。

2. 用户评价的重要性

越注重用户体验的商品,用户评价的管理就越重要,例如旅游类商品、生鲜类商品、鞋服类商品等。

 


版权声明:本文为weixin_45682261原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。