数据读取与处理封装和并行读取【paddle飞桨学习笔记】

封装数据读取与处理为函数

def load_data(mode='train'):
    datafile = './work/mnist.json.gz'
    print('loading mnist dataset from {} ......'.format(datafile))
    # 加载json数据文件
    data = json.load(gzip.open(datafile))
    print('mnist dataset load done')
   
    # 读取到的数据区分训练集,验证集,测试集
    train_set, val_set, eval_set = data
    if mode=='train':
        # 获得训练数据集
        imgs, labels = train_set[0], train_set[1]
    elif mode=='valid':
        # 获得验证数据集
        imgs, labels = val_set[0], val_set[1]
    elif mode=='eval':
        # 获得测试数据集
        imgs, labels = eval_set[0], eval_set[1]
    else:
        raise Exception("mode can only be one of ['train', 'valid', 'eval']")
    print("训练数据集数量: ", len(imgs))
    
    # 校验数据
    imgs_length = len(imgs) 

    assert len(imgs) == len(labels), \
          "length of train_imgs({}) should be the same as train_labels({})".format(len(imgs), len(label))
    
    # 获得数据集长度
    imgs_length = len(imgs)
    
    # 定义数据集每个数据的序号,根据序号读取数据
    index_list = list(range(imgs_length))
    # 读入数据时用到的批次大小
    BATCHSIZE = 100
    
    # 定义数据生成器 在函数里面定义函数?
    def data_generator():
        if mode == 'train':
            # 训练模式下打乱数据
            random.shuffle(index_list)
        imgs_list = []
        labels_list = []
        for i in index_list:
            # 将数据处理成希望的格式,比如类型为float32,shape为[1, 28, 28]
            img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')
            label = np.reshape(labels[i], [1]).astype('float32')
            imgs_list.append(img) 
            labels_list.append(label)
            if len(imgs_list) == BATCHSIZE:
                # 获得一个batchsize的数据,并返回
                yield np.array(imgs_list), np.array(labels_list)
                # 清空数据读取列表
                imgs_list = []
                labels_list = []
    
        # 如果剩余数据的数目小于BATCHSIZE,
        # 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch
        if len(imgs_list) > 0:
            yield np.array(imgs_list), np.array(labels_list)
    return data_generator

数据并行读取

# 定义数据读取后存放的位置,CPU或者GPU,这里使用CPU
# place = fluid.CUDAPlace(0) 时,数据才读取到GPU上
place = fluid.CPUPlace()
with fluid.dygraph.guard(place):
    # 声明数据加载函数,使用训练模式
    train_loader = load_data(mode='train')
    # 定义DataLoader对象用于加载Python生成器产生的数据
    data_loader = fluid.io.DataLoader.from_generator(capacity=5, return_list=True)
    # 设置数据生成器
    data_loader.set_batch_generator(train_loader, places=place)
    # 迭代的读取数据并打印数据的形状
    for i, data in enumerate(data_loader):
        image_data, label_data = data
        print(i, image_data.shape, label_data.shape)
        if i>=5:
            break
place = fluid.CPUPlace()

# 设置读取的数据是放在CPU还是GPU上。

data_loader = fluid.io.DataLoader.from_generator(capacity=5, return_list=True) 

# 创建一个DataLoader对象用于加载Python生成器产生的数据。数据会由Python线程预先读取
# 并异步送入一个队列中。

data_loader.set_batch_generator(train_loader, place) 

# 用创建的DataLoader对象设置一个数据生成器set_batch_generator,
# 输入的参数是一个Python数据生成器train_loader和服务器资源类型place(标明CPU还是GPU)

fluid.io.DataLoader.from_generator参数名称和含义如下:

  • feed_list:仅在PaddlePaddle静态图中使用,动态图中设置为“None”,本教程默认使用动态图的建模方式;
  • capacity:表示在DataLoader中维护的队列容量,如果读取数据的速度很快,建议设置为更大的值;
  • use_double_buffer:是一个布尔型的参数,设置为“True”时,Dataloader会预先异步读取下一个batch的数据并放到缓存区;
  • iterable:表示创建的Dataloader对象是否是可迭代的,一般设置为“True”;
  • return_list:在动态图模式下需要设置为“True”。

并行读取数据进行模型训练完整代码:

with fluid.dygraph.guard():
    model = MNIST()
    model.train()
    #调用加载数据的函数
    train_loader = load_data('train')
    # 创建异步数据读取器
    place = fluid.CPUPlace()
    data_loader = fluid.io.DataLoader.from_generator(capacity=5, return_list=True)
    data_loader.set_batch_generator(train_loader, places=place)
    
    optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.001, parameter_list=model.parameters())
    EPOCH_NUM = 3
    for epoch_id in range(EPOCH_NUM):
        for batch_id, data in enumerate(data_loader):
            image_data, label_data = data
            image = fluid.dygraph.to_variable(image_data)
            label = fluid.dygraph.to_variable(label_data)
            
            predict = model(image)
            
            loss = fluid.layers.square_error_cost(predict, label)
            avg_loss = fluid.layers.mean(loss)
            
            if batch_id % 200 == 0:
                print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))
            
            avg_loss.backward()
            optimizer.minimize(avg_loss)
            model.clear_gradients()

    fluid.save_dygraph(model.state_dict(), 'mnist')

 


版权声明:本文为weixin_42678511原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。