For all real numbers a>0, b>0, c>0,M>0, N>0
l o g a M + l o g a N = l o g a M N log_aM + log_aN = log_aMNlogaM+logaN=logaMN (1)
proof:
assume: l o g a M = m , l o g a N = n log_aM = m, log_aN = nlogaM=m,logaN=n
so: a m = M , a n = N ⇒ M ⋅ N = a m ⋅ a n = a m + n a^m = M, a^n = N \Rightarrow M \cdot N = a^m \cdot a^n = a^{m+n}am=M,an=N⇒M⋅N=am⋅an=am+n
l o g a M N = m + n = l o g a M + l o g a N log_a{MN} = m + n = log_aM + log_aNlogaMN=m+n=logaM+logaN
l o g a M − l o g a N = l o g a M N log_aM - log_aN = log_a\frac{M}{N}logaM−logaN=logaNM (2)
proof:
assume: l o g a M = m , l o g a N = n log_aM = m, log_aN = nlogaM=m,logaN=n
so: a m = M , a n = N ⇒ M N = a m a n = a m − n ⇒ l o g a M N = m − n = l o g a M − l o g a N a^m = M, a^n = N \Rightarrow \frac{M}{N}=\frac{a^m}{a^n} = a^{m - n} \Rightarrow log_a{\frac{M}{N}} = m - n = log_aM - log_aNam=M,an=N⇒NM=anam=am−n⇒logaNM=m−n=logaM−logaN
l o g a a M = M log_aa^M = MlogaaM=M (3)
proof:
assume: a M = B ⇒ l o g a B = M a^M = B \Rightarrow log_aB = MaM=B⇒logaB=M
so: l o g a a M = M log_aa^M = MlogaaM=M
a l o g a M = M a^{log_aM} = MalogaM=M (4)
proof:
assume: l o g a M = B log_aM = BlogaM=B
so: a B = M a^B = MaB=M
∵ B = l o g a M , a B = M \because B = log_aM, a^B = M∵B=logaM,aB=M
∴ a B = a l o g a M = M \therefore a^B = a^{log_aM} = M∴aB=alogaM=M
l o g a M N = N l o g a M log_aM^N = Nlog_aMlogaMN=NlogaM (5)
proof:
l o g a M N = l o g a ( M ⋅ M ⋯ M ⏞ N ) log_aM^N = log_a(\overbrace{M \cdot M \cdots M}^{N})logaMN=loga(M⋅M⋯MN)
∵ l o g a M + l o g a N = l o g a M N \because log_aM + log_aN = log_aMN∵logaM+logaN=logaMN property (1)
∴ l o g a ( M ⋅ M ⋯ M ⏞ N ) = l o g a M + l o g a M + ⋯ l o g a M ⏞ N = N l o g a M \therefore log_a(\overbrace{M \cdot M \cdots M}^{N}) = \overbrace{log_aM + log_aM + \cdots log_aM}^{N} = Nlog_aM∴loga(M⋅M⋯MN)=logaM+logaM+⋯logaMN=NlogaM
l o g a b = l o g c b l o g c a = l n b l n a = l g b l g a log_ab = \frac{log_cb}{log_ca}= \frac{lnb}{lna} = \frac{lgb}{lga}logab=logcalogcb=lnalnb=lgalgb (6)
proof:
assume: l o g a b = m log_ab = mlogab=m then b = a m , l o g c b = l o g c a m , l o g c a m = m l o g c a b=a^m, log_cb = log_ca^m, log_ca^m = mlog_cab=am,logcb=logcam,logcam=mlogca property (5)
∵ l o g c b = m l o g c a = > l o g c b l o g c a = m \because log_cb = mlog_ca => \frac{log_cb}{log_ca} = m∵logcb=mlogca=>logcalogcb=m and m = l o g a b m = log_abm=logab
∴ l o g a b = l o g c b l o g c a \therefore log_ab = \frac{log_cb}{log_ca}∴logab=logcalogcb
l o g a b = l n b l n a log_ab = \frac{lnb}{lna}logab=lnalnb means c = e
l o g a b = l g b l g a log_ab = \frac{lgb}{lga}logab=lgalgb means c = 10
l o g a M b N = N M l o g a b log_{a^M}b^N = \frac{N}{M}log_ablogaMbN=MNlogab (7)
proof:
∵ l o g a M b N = l o g c b N l o g c a M \because log_{a^M}{b^N} = \frac{log_cb^N}{log_ca^M}∵logaMbN=logcaMlogcbN property (6)
l o g c b N l o g c a M = N l o g c b M l o g c a \frac{log_cb^N}{log_ca^M} = \frac{Nlog_cb}{Mlog_ca}logcaMlogcbN=MlogcaNlogcb property (5)
N l o g c b M l o g c a = N M l o g c b l o g c a \frac{Nlog_cb}{Mlog_ca} = \frac{N}{M} \frac{log_cb}{log_ca}MlogcaNlogcb=MNlogcalogcb
N M l o g c b l o g c a = N M l o g a b \frac{N}{M} \frac{log_cb}{log_ca} = \frac{N}{M}log_abMNlogcalogcb=MNlogab property (6)
∴ l o g a M b N = N M l o g a b \therefore log_{a^M}{b^N} = \frac{N}{M}log_ab∴logaMbN=MNlogab
l o g 1 a b = l o g a 1 b log_{\frac{1}{a}}b = log_a{\frac{1}{b}}loga1b=logab1 (8)
∵ l o g 1 a b = l o g a − 1 b = l o g a − 1 b 1 = 1 − 1 l o g a b \because log_{\frac{1}{a}}b = log_{a^{-1}}b = log_{a^{-1}}b^1 = \frac{1}{-1}log_ab∵loga1b=loga−1b=loga−1b1=−11logab property (7)
1 − 1 l o g a b = − 1 l o g a b = − 1 1 l o g a b = l o g a 1 b − 1 = l o g a 1 b \frac{1}{-1}log_ab = -1log_ab = \frac{-1}{1}log_ab = log_{a^1}{b^{-1}} = log_a{\frac{1}{b}}−11logab=−1logab=1−1logab=loga1b−1=logab1
∴ l o g 1 a b = l o g a 1 b \therefore log_{\frac{1}{a}}b = log_a{\frac{1}{b}}∴loga1b=logab1
l o g b a = 1 l o g a b log_ba = \frac{1}{log_ab}logba=logab1 (9)
proof:
assume: x = l o g a b , y = l o g b a x = log_ab, y = log_bax=logab,y=logba
⇒ a x = b , b y = a \Rightarrow a^x = b, b^y = a⇒ax=b,by=a
x = l o g a b = l o g a a ⋅ b a = l o g a a + l o g a b a x = log_ab = log_a{a\cdot\frac{b}{a}} = log_aa + log_a{\frac{b}{a}}x=logab=logaa⋅ab=logaa+logaab property (1)
= l o g a a + l o g a a x b y = l o g a a + l o g a a x − l o g a b y = log_aa + log_a{\frac{a^x}{b^y}} = log_aa + log_a{a^x} - log_a{b^y}=logaa+logabyax=logaa+logaax−logaby property (2)
= l o g a a + x l o g a a − y l o g a b = log_aa + xlog_aa - ylog_ab=logaa+xlogaa−ylogab property (5)
= 1 + x − y l o g a b =1+x - ylog_ab=1+x−ylogab
x = 1 + x − y l o g a b ⇒ y l o g a b = 1 x = 1 + x - ylog_ab \Rightarrow ylog_ab = 1x=1+x−ylogab⇒ylogab=1
∵ l o g a b = x \because log_ab = x∵logab=x
∴ y x = 1 ⇒ y = 1 x \therefore yx = 1 \Rightarrow y = \frac{1}{x}∴yx=1⇒y=x1
∵ x = l o g a b , y = l o g b a \because x = log_ab, y = log_ba∵x=logab,y=logba
∴ l o g b a = 1 l o g a b \therefore log_ba = \frac{1}{log_ab}∴logba=logab1
a l o g b c = c l o g b a a^{log_bc} = c^{log_ba}alogbc=clogba (10)
proof:
Take l o g b log_blogb on both sides:
a l o g b c = c l o g b a a^{log_bc} = c^{log_ba}alogbc=clogba
⟺ l o g b a l o g b c = l o g b c l o g b a \Longleftrightarrow log_b{a^{log_bc}} = log_b{c^{log_ba}}⟺logbalogbc=logbclogba
⟺ l o g b c ⋅ l o g b a = l o g b a ⋅ l o g b c \Longleftrightarrow log_bc \cdot log_ba = log_ba \cdot log_bc⟺logbc⋅logba=logba⋅logbc property (5)
∵ l o g b c ⋅ l o g b a = l o g b a ⋅ l o g b c \because log_bc \cdot log_ba = log_ba \cdot log_bc∵logbc⋅logba=logba⋅logbc
∴ a l o g b c = c l o g b a \therefore a^{log_bc} = c^{log_ba}∴alogbc=clogba