什么是神经元网络控制?,什么是神经网络控制?

前馈控制器与常规PID控制器有什么不同

PID控制器(Proportion Integration Differentiation.比例-积分-微分控制器),由比例单元 P、积分单元 I 和微分单元 D 组成。

通过Kp, Ki和Kd三个参数的设定。PID控制器主要适用于基本线性和动态特性不随时间变化的系统。PID 控制器是一个在工业控制应用中常见的反馈回路部件。

这个控制器把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输入值的目的是可以让系统的数据达到或者保持在参考值。

和其他简单的控制运算不同,PID控制器可以根据历史数据和差别的出现率来调整输入值,这样可以使系统更加准确,更加稳定。

可以通过数学的方法证明,在其他控制方法导致系统有稳定误差或过程反复的情况下,一个PID反馈回路却可以保持系统的稳定。

智能PID控制就是将智能控制(intelligent control)与传统的PID控制相结合,是自适应的,它的设计思想是利用专家系统(Expert System)、模糊控制(fuzzy control)和神经网络(neural network)技术,将人工智能以非线性控制方式引入到控制器中,使系统在任何运行状态下均能得到比传统PID控制更好的控制性能。

具有不依赖系统精确数学模型和控制器参数在线自动调整等特点,对系统参数变化具有较好的适应性。

模糊PID控制是利用当前的控制偏差和偏差,结合被控过程动态特性的变化,以及针对具体过程的实际经验,根据一定的控制要求或目标函数,通过模糊规则推理,对PID控制器的三个参数进行在线调整。

智能PID控制主要有模糊PID控制器、专家PID控制器和基于神经网络的PID控制器等。

专家系统是一种能在某个特定领域内﹐以人类专家水平解决该领域中专门任务的计算器系统﹐其内部具有某个领域中大量专家水平的知识与经验﹐能够利用人类专家的知识和解决问题的方法来解决该领域的问题。

专家PID控制采用规则PID控制形式,通过对系统误差和系统输出的识别,以了解被控对象过程动态特性的变化,在线调整PID三个参数,直到过程的响应曲线为某种最佳响应曲线。

它是一种基于启发式规则推理的自适应技术,其目的就是为了应付过程中出现的不确定性。

神经网络系统亦称为人工神经网络﹐就是将人工神经元按某种方式联结组成的网络﹐用于模拟人脑神经元活动的过程﹐实现对信息的加工﹑处理﹑存储等。神经网络有前向网络(前馈网络)﹑反馈网络等网络结构形式。

与模糊PID控制和专家PID控制不同,基于神经网络的PID控制不是用神经网络来整定PID的参数,而是用神经网络直接作为控制器,通过训练神经网络的权系数间接地调整PID参数。

谷歌人工智能写作项目:神经网络伪原创

神经学习控制有哪几类型

神经学习控制有监督控制、直接逆模控制、模型参考控制、内模控制、预测控制、最优决策控制等写作猫

神经学习控制设计方法:神经控制器的设计大致可以分为两种类型,一类是与传统设计手法相结合;一类是完全脱离传统手法,另行一套。无论是哪一类,都未有固定的模式,很多问题都还在探讨之中。

究其原因是因为神经控制还是一门新学科。

在社会上并不普及,为数众多的人甚至连“神经控制”都还没有听说过,神经系统的研究还处于摸索探讨阶段,神经网络虽然有了一些所谓的“理论”,但并不成熟,甚至连隐层节点的作用机理这一类简单的理论问题都没有搞清楚。

神经学习控制特点:神经控制器与古典控制器和现代控制器相比,有优点也有缺点。优点是神经控制器的设计与被控制对象的数学模型无关,这是神经控制器的最大优点,也是神经网络能够在自动控制中立足的根本原因。

缺点是神经网络需要在线或离线开展学习训练,并利用训练结果进行系统设计。这种训练在很大程度上依赖训练样本的准确性,而训练样本的选取依旧带有人为的因素。

Annc什么意思中文

要做毕业设计了!我就搞不清楚神经元控制器跟神经元PID控制器有啥区别呢?

传递函数1/s(s+1)(s+2)的节约响应曲线、PID控制器的控制曲线、模糊自适应PID控制器的控制曲线如下示: 80

遗传算法和神经网络是两个改进方向。前者是一个全局寻优算法,后者是拟合算法(类似于自适应)。

全局寻优就是找到一组控制参数,使得阶跃响应与理想输出之间误差的某一范数最小,控制参数可以是你的模糊控制器参数,神经网络参数,pid前面的系数等等等等。

拟合算法就是找到某个函数关系,使得输入输出之间的误差最小,很类似数值方法里面的插值。要达到相同或者更好的控制效果是必然的。

比如你用遗传算法找到一组最好的模糊pid控制器参数,然后和你自己试凑的模糊pid相比,那肯定是更好,但是原理上没有什么改观,控制器还是原来的控制器,只是找到了最优参数,另外实时性要求不高的话建议不用遗传算法,用更精确的全局寻优算法,比如粒子群,蚁群算法等。

神经网络PID控制器古典的是用神经网络拟合pid参数,现代的都是把PID环节做成隐含层神经元,因为你这个被控对象很简单,所以我个人观点,加上一些常用的神经网络控制算法就够用了,比如某些环节加一个加权和。

这个东西说实在的你要做作业是个不错的练习,但是写论文显得略微落伍了。单纯的全局寻优算法和神经网络控制前些年做的有点烂了,写论文的话实在是很难找出来创新点。

什么是PID调节器,并举例说明P、I、D的调节作用。

PID 调节器是一个在工业控制应用中常见的反馈回路部件,PID是以它的三种纠正算法而命名的。这三种算法都是用加法调整被控制的数值。而实际上这些加法运算大部分变成了减法运算因为被加数总是负值。

以下是PID的调节作用举例:1.比例- 来控制当前,误差值和一个负常数P(表示比例)相乘,然后和预定的值相加。P只是在控制器的输出和系统的误差成比例的时候成立。

这种控制器输出的变化与输入控制器的偏差成比例关系。比如说,一个电热器的控制器的比例尺范围是10°C,它的预定值是20°C。

那么它在10°C的时候会输出100%,在15°C的时候会输出50%,在19°C的时候输出10%,注意在误差是0的时候,控制器的输出也是0。

2.积分 - 来控制过去,误差值是过去一段时间的误差和,然后乘以一个负常数I,然后和预定值相加。I从过去的平均误差值来找到系统的输出结果和预定值的平均误差。

一个简单的比例系统会振荡,会在预定值的附近来回变化,因为系统无法消除多余的纠正。通过加上一个负的平均误差比例值,平均的系统误差值就会总是减少。所以,最终这个PID回路系统会在预定值定下来。

3.微分 - 来控制将来,计算误差的一阶导,并和一个负常数D相乘,最后和预定值相加。这个导数的控制会对系统的改变作出反应。导数的结果越大,那么控制系统就对输出结果作出更快速的反应。

这个D参数也是PID被称为可预测的控制器的原因。D参数对减少控制器短期的改变很有帮助。一些实际中的速度缓慢的系统可以不需要D参数。

扩展资料:用更专业的话来讲,一个PID控制器可以被称作一个在频域系统的滤波器。这一点在计算它是否会最终达到稳定结果时很有用。

如果数值挑选不当,控制系统的输入值会反复振荡,这导致系统可能永远无法达到预设值。

 


版权声明:本文为aifamao6原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。