卷积操作
torch.nn.functional.conv2d():对由多个输入平面组成的输入信号进行二维卷积
stride:滑动步长
padding:对矩阵边缘进行填充
import torch
import torch.nn.functional as F
#输入图像5×5
input = torch.tensor([[1, 2, 0, 3, 1],
[0, 1, 2, 3, 1],
[1, 2, 1, 0, 0],
[5, 2, 3, 1, 1],
[2, 1, 0, 1, 1]])
#输入卷积核3×3
kernel = torch.tensor([[1, 2, 1],
[0, 1, 0],
[2, 1, 0]])
#输入input和卷积核kernel需要四个参数,要求相乘之后乘积不变
input = torch.reshape(input, (1, 1, 5, 5))
kernel = torch.reshape(kernel, (1, 1, 3, 3))
#对由多个输入平面组成的输入信号进行二维卷积
# stride:滑动步长
output1 = F.conv2d(input, kernel, stride=1)
print(output1)
output2 = F.conv2d(input, kernel, stride=2)
print(output2)
#padding:对矩阵边缘进行填充
output3 = F.conv2d(input, kernel, stride=1, padding=1)
print(output3)
结果:
tensor([[[[10, 12, 12],
[18, 16, 16],
[13, 9, 3]]]])
tensor([[[[10, 12],
[13, 3]]]])
tensor([[[[ 1, 3, 4, 10, 8],
[ 5, 10, 12, 12, 6],
[ 7, 18, 16, 16, 8],
[11, 13, 9, 3, 4],
[14, 13, 9, 7, 4]]]])
in_channels:输入图片通道
out_channels:由卷积产生的通道数
kernel_size:卷积核尺寸
stride:滑动步长
padding:边缘填充
经过卷积操作后原始图减小,例子中从32×32变成30×30
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./data", train=False, transform=torchvision.transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=64)
class Test(nn.Module):
def __init__(self):
super(Test, self).__init__()
#in_channels=3:输入图片第三通道
#out_channels=6:由卷积产生的通道数6
#kernel_size=3:卷积核3×3
#stride=1:滑动步长1
#padding=0:边缘填充0
self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)
def forward(self,x):
#向卷积层传入参数
x = self.conv1(x)
return x
test1 = Test()
writer = SummaryWriter("./logs")
step = 0
for data in dataloader:
imgs, targets = data
output = test1(imgs)
#torch.Size([64, 3 ,32, 32])
writer.add_images("input", imgs, step)
#torch.Size([64, 6, 30, 30])
#彩色图像的channels需要为3
#当不能确定第一个参数的值时填-1
output = torch.reshape(output, (-1, 3, 30, 30))
writer.add_images("input", imgs, step)
step = step + 1
结果:
版权声明:本文为weixin_43871577原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。