模型假设
被研究人群是封闭的, 总人为 N NN,病人、健康人和移出者 (有免疫能力, 移出感染系统的人, 病人治愈后为移出者) 的比例分别为 i ( t ) , s ( t ) , r ( t ) i (t ), s (t ), r (t )i(t),s(t),r(t)
病人的日接触率 λ \lambdaλ , 日治愈率 μ \muμ, 接触数 σ = λ μ \sigma = \displaystyle{\frac{\lambda}{\mu}}σ=μλ
模型建立
s ( t ) + i ( t ) + r ( t ) = 1 , ( 1 ) s (t ) + i(t ) + r (t ) = 1, \quad (1)s(t)+i(t)+r(t)=1,(1)
N [ i ( t + Δ t ) − i ( t ) ] = λ N s ( t ) i ( t ) Δ t − μ N i ( t ) Δ t , ( 2 ) N[i(t+\Delta t)-i(t)]=\lambda N s(t) i(t) \Delta t-\mu N i(t) \Delta t, \quad (2)N[i(t+Δt)−i(t)]=λNs(t)i(t)Δt−μNi(t)Δt,(2)
N [ s ( t + Δ t ) − s ( t ) ] = − λ N s ( t ) i ( t ) Δ t , ( 3 ) N[s(t+\Delta t)-s(t)]=-\lambda N s(t) i(t) \Delta t, \quad (3)N[s(t+Δt)−s(t)]=−λNs(t)i(t)Δt,(3)
⟹ \Longrightarrow⟹
{ d i d t = λ s i − μ i d s d t = − λ s i i ( 0 ) = i 0 , s ( 0 ) = s 0 i 0 + s 0 ≈ 1 ( 通常 r ( 0 ) = r 0 很小 ) \begin{cases} {\frac{d i}{d t}}=\lambda s i-\mu i \\ {\frac{d s}{d t}}=-\lambda s i \\ i(0)=i_{0}, \ s(0)=s_{0} \\ i_{0}+s_{0} \approx 1\left(\text { 通常 } r(0)=r_{0} \text { 很小 }\right) \end{cases}⎩⎪⎪⎪⎨⎪⎪⎪⎧dtdi=λsi−μidtds=−λsii(0)=i0, s(0)=s0i0+s0≈1( 通常 r(0)=r0 很小 )
无法求出 i ( t ) , s ( t ) i(t ), s(t )i(t),s(t) 的解析解, 在相平面 s − t s-ts−t 上研究解的性质.
相轨线 i ( s ) i ( s )i(s) 及其分析
消去 d t d tdt, σ = λ μ \sigma=\displaystyle{\frac{\lambda}{\mu}}σ=μλ, ⟹ \Longrightarrow⟹
{ d i d s = 1 σ ⋅ s − 1 i ∣ s = s 0 = i 0 \begin{cases} \displaystyle{\frac{d i}{d s}=\frac{1}{\sigma \cdot s}-1} \\ \left.i\right|_{s=s_{0}}=i_{0} \end{cases}⎩⎨⎧dsdi=σ⋅s1−1i∣s=s0=i0
⟹ \Longrightarrow⟹ 相轨线:
i ( s ) = ( s 0 + i 0 ) − s + 1 σ ln s s 0 i(s)=\left(s_{0}+i_{0}\right)-s+\frac{1}{\sigma} \ln \frac{s}{s_{0}}i(s)=(s0+i0)−s+σ1lns0s
定义域 D = { ( s , i ) ∣ s ≥ 0 , i ≥ 0 , s + i ≤ 1 } D=\{(s, i) \mid s \geq 0, i \geq 0, s+i \leq 1\}D={(s,i)∣s≥0,i≥0,s+i≤1}

s ( t ) s(t)s(t) 单调减. t → ∞ t \rightarrow \inftyt→∞ 时, i → 0 i \rightarrow 0i→0. ⟹ \Longrightarrow⟹ t → ∞ t \rightarrow \inftyt→∞ 时
s 0 + i 0 − s ∞ + 1 σ ln s ∞ s 0 = 0 s_{0}+i_{0}-s_{\infty}+\frac{1}{\sigma} \ln \frac{s_{\infty}}{s_{0}}=0s0+i0−s∞+σ1lns0s∞=0
P 1 : s 0 > 1 σ P_{1}: s_{0}>\displaystyle{\frac{1}{\sigma}}P1:s0>σ1 ⟹ i ( t ) \Longrightarrow i(t)⟹i(t) 先升后降至 0 00 ⟹ \Longrightarrow⟹ 传染病蔓延;
P 2 : s 0 < 1 σ P_{2}: s_{0}<\displaystyle{\frac{1}{\sigma}}P2:s0<σ1 ⟹ i ( t ) \Longrightarrow i(t)⟹i(t) 单调降至 0 00 ⟹ \Longrightarrow⟹ 传染病不蔓延.
1 σ \displaystyle{\frac{1}{\sigma}}σ1 —— 阈值
预防传染病蔓延的手段
- 提高阈值 1 σ ⟹ \displaystyle{\frac{1}{\sigma }}\Longrightarrowσ1⟹ 降低 σ ( = λ μ ) ⟹ λ ↓ , μ ↑ \sigma \left(=\displaystyle{\frac{\lambda}{\mu }} \right) \Longrightarrow \lambda \downarrow, \ \mu \uparrowσ(=μλ)⟹λ↓, μ↑
- λ \lambdaλ (日接触率) ↓ ⟹ \downarrow \ \Longrightarrow↓ ⟹ 卫生水平 ↑ \uparrow↑
- μ \muμ (日治愈率) ↑ \uparrow↑ ⟹ \Longrightarrow⟹ 医疗水平 ↑ \uparrow↑
- 降低 s 0 s_{0}s0 ⇒ s 0 + i 0 + r 0 = 1 \displaystyle{\xRightarrow{s_{0}+i_{0}+r_{0}=1}}s0+i0+r0=1 提高 r 0 r_{0}r0 ⟹ \Longrightarrow⟹ 群体免疫
σ \sigmaσ 的估计
s 0 + i 0 − s ∞ + 1 σ ln s ∞ S 0 = 0 \displaystyle{s_{0}+i_{0}-s_{\infty}+\frac{1}{\sigma} \ln \frac{s_{\infty}}{S_{0}}=0}s0+i0−s∞+σ1lnS0s∞=0, 忽略 i 0 i_0i0 ⟹ \Longrightarrow⟹
σ = ln s 0 − ln s ∞ s 0 − s ∞ \sigma=\frac{\ln s_{0}-\ln s_{\infty}}{s_{0}-s_{\infty}}σ=s0−s∞lns0−lns∞