伯努利数

参考文献资料:
小蒟蒻yyb的博客
百度百科-伯努利数
伯努利数(Bernoulli)——学习笔记
康复计划#3 简单常用的几种计算自然数幂和的方法
Bernoulli number has been found for about 200 years.Its name is named after Bernoulli, its discoverer.

Recursive definition:

∑ k = 0 n ( n + 1 k ) B k = 0 \sum_{k=0}^n{n+1\choose k}B_k=0k=0n(kn+1)Bk=0

Take out item n,we can get:
∑ k = 0 n − 1 ( n + 1 k ) B k + ( n + 1 n ) B n = 0 \sum_{k=0}^{n-1}{n+1\choose k}B_k+{n+1\choose n}B_n=0k=0n1(kn+1)Bk+(nn+1)Bn=0

∑ k = 0 n − 1 ( n + 1 k ) B k + ( n + 1 ) B n = 0 \sum_{k=0}^{n-1}{n+1\choose k}B_k+(n+1)B_n=0k=0n1(kn+1)Bk+(n+1)Bn=0

B n = − 1 n + 1 ∑ k = 0 n − 1 ( n + 1 k ) B k B_n=-\frac{1}{n+1}\sum_{k=0}^{n-1}{n+1\choose k}B_kBn=n+11k=0n1(kn+1)Bk

Generating Function Definition:

B ^ ( z ) = z e z − 1 \hat B(z)=\frac{z}{e^z-1}B^(z)=ez1z

where B ^ ( z ) \hat B(z)B^(z) is the generating function of { B n } \{B_n\}{Bn}:
B ^ ( z ) = ∑ k = 0 ∞ B k z k k ! \hat B(z)=\sum_{k=0}^{\infty}B_k\frac{z^k}{k!}B^(z)=k=0Bkk!zk

The Sum of the k-th Powers:

We define :
S t ( n ) = ∑ k = 0 n − 1 k t S_t(n)=\sum_{k=0}^{n-1}k^tSt(n)=k=0n1kt

Be care about this:the generating function of { k t } \{k^t\}{kt} is
∑ t = 0 ∞ k t z t t ! = ∑ t = 0 ∞ ( k z ) t t ! = e k z \sum_{t=0}^{\infty}k^t\frac{z^t}{t!}=\sum_{t=0}^{\infty}\frac{(kz)^t}{t!}=e^{kz}t=0ktt!zt=t=0t!(kz)t=ekz

The result can be got by Taylor expansion.
Considering the Generation Function of S t ( z ) S_t(z)St(z):
S ^ t ( z ) = ∑ p = 0 ∞ S p ( z ) z p p !                  \hat S_t(z)=\sum_{p=0}^{\infty}S_p(z)\frac{z^p}{p!}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \S^t(z)=p=0Sp(z)p!zp                

= ∑ p = 0 ∞ ( ∑ k = 0 n − 1 k p ) z p p ! =\sum_{p=0}^{\infty}\bigg(\sum_{k=0}^{n-1}k^p\bigg)\frac{z^p}{p!}=p=0(k=0n1kp)p!zp

= ∑ k = 0 n − 1 ∑ p = 0 ∞ ( k z ) p p !        =\sum_{k=0}^{n-1}\sum_{p=0}^{\infty}\frac{(kz)^p}{p!}\ \ \ \ \ \=k=0n1p=0p!(kz)p      

= ∑ k = 0 n − 1 e k z                    =\sum_{k=0}^{n-1}e^{kz}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \=k=0n1ekz                  

According to the summation formula of equal ratio series, we can get:
S ^ t ( z ) = e n z − 1 e z − 1 \hat S_t(z)=\frac{e^{nz}-1}{e^z-1}S^t(z)=ez1enz1

Considering the definition of the generating function of Bernoulli number:
S ^ t ( z ) = B ^ ( z ) e n z − 1 z \hat S_t(z)=\hat B(z)\frac{e^{nz}-1}{z}S^t(z)=B^(z)zenz1

So we have:
S t ( n ) = 1 t + 1 ∑ k = 0 t ( t + 1 k ) B k n t + 1 − k S_t(n)=\frac{1}{t+1}\sum_{k=0}^t{t+1\choose k}B_kn^{t+1-k}St(n)=t+11k=0t(kt+1)Bknt+1k

Where S t ( n ) S_t(n)St(n) is a t-th polynomial of n nn


版权声明:本文为alpha202原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。