一 区别
最小生成树能够保证整个拓扑图的所有路径之和最小,但不能保证任意两点之间是最短路径。
最短路径是从一点出发,到达目的地的路径最小。
二 实现方法
1. 最小生成树
最小生成树有两种算法来得到:Prims算法和Kruskal算法。
Kruskal算法:根据边的加权值以递增的方式,一次找出加权值最低的边来构建最小生成树,而且规定:每次添加的边不能造成生成树有回路,知道找到N-1个边为止。
Prims算法:以每次加入一个的临界边来建立最小生成树,直到找到N-1个边为止。其规则为:以开始时生成树的集合(集合U)为起始的定点,然后找出与生成树集合邻接的边(集合V)中,加权值最小的边来建立生成树,为了确定新加入的边不会造成回路,所以每一个新加入的边,只允许有一个顶点在生成树集合中,重复执行此步骤,直到找到N-1个边为止。
下面是一段实现Prims算法的代码:
while(alreadyVisited.size() != Switches.size())
{
Vector neighbors = getNeighborSet(topo, Switches, alreadyVisited);
Vector CostOfNeighbors = new Vector();
int cost = 40000000;
ASwitch srcsw = null, dstsw = null;
for(int i = 0;i < neighbors.size();i++)
{
ASwitch sw1 = (ASwitch)neighbors.get(i);
for(int j = 0;j < alreadyVisited.size();j++)
{
ASwitch sw2 = (ASwitch)alreadyVisited.get(j);
int tempcost = getCost(topo, sw1, sw2, insid, "legacy");
if( (tempcost > 0) && (tempcost < cost ))
{
cost = tempcost;
srcsw = sw1;
dstsw = sw2;
}
}
}//end for neighbors
//得到一个最小花费的邻居
alreadyVisited.add(srcsw);
treenode temptr = new treenode();
temptr.Mac = srcsw.SWName;
current.childlist.push(temptr);
current = temptr;
}//end while
2 最短路径 算法描述
(这里描述的是从节点1开始到各点的dijkstra算法,其中Wa->b表示a->b的边的权值,d(i)即为最短路径值)1. 置集合S={2,3,...n}, 数组d(1)=0, d(i)=W1->i(1,i之间存在边) or +无穷大(1.i之间不存在边)2. 在S中,令d(j)=min{d(i),i属于S},令S=S-{j},若S为空集则算法结束,否则转33. 对全部i属于S,如果存在边j->i,那么置d(i)=min{d(i), d(j)+Wj->i},转2Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将 加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。算法具体步骤(1)初始时,S只包含源点,即S=,v的距离为0。U包含除v外的其他顶点,U中顶点u距离为边上的权(若v与u有边)或 ∞(若u不是v的出边邻接点)。(2)从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。(3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值为顶点k的距离加上边上的权。(4)重复步骤(2)和(3)直到所有顶点都包含在S中。 复杂度分析
Dijkstra 算法的时间复杂度为O(n^2)空间复杂度取决于存储方式,邻接矩阵为O(n^2) 下面是一段最短路径算法的代码:
while(Visited.size() != Switches.size())
{
for(int i = 0;i < alreadyVisited.size(); i ++)
{
ASwitch sw1 = (ASwitch)alreadyVisited.get(i);
System.out.println("already visited: "+sw1.SWName);
Vector ng = getNeighbors(topo, Switches, sw1);
alreadyVisited.remove(sw1);
//Visited.add(sw1);
Visited = addtoVector(Visited,sw1);
for(int j = 0;j < ng.size();j++)
{
ASwitch sw2 = (ASwitch)ng.get(j);
if((swValue.get(sw2) == 0) ) continue;
int tempcost = -1;
int tcost = getCost(topo, sw1, sw2, insid, "legacy");;
if(tcost >0 ) tempcost = swValue.get(sw1)+tcost;
if((tempcost > 0) && (tempcost < swValue.get(sw2)))
{
swValue.put(sw2, tempcost);
presw.put(sw2, sw1);
System.out.println("sw: "+sw2.SWName+" cost: "+tempcost+" presw: "+sw1.SWName);
alreadyVisited.add(sw2);
}
}
}
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
转载于:https://www.cnblogs.com/wangicter/archive/2011/11/18/4767403.html