题目
Given any permutation of the numbers {0, 1, 2,…, N-1}, it is easy to sort them in increasing order. But what if Swap(0, *) is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:
Swap(0, 1) => {4, 1, 2, 0, 3}
Swap(0, 3) => {4, 1, 2, 3, 0}
Swap(0, 4) => {0, 1, 2, 3, 4}
Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.
Input Specification:
Each input file contains one test case, which gives a positive N (<=105) followed by a permutation sequence of {0, 1, …, N-1}. All the numbers in a line are separated by a space.
Output Specification:
For each case, simply print in a line the minimum number of swaps need to sort the given permutation.
Sample Input:
10 3 5 7 2 6 4 9 0 8 1
Sample Output:
9
思路
初始序列:
3 5 7 2 6 4 9 0 8 1
对应的变换为:
3 5 0 2 6 4 9 7 8 1
3 5 2 0 6 4 9 7 8 1
0 5 2 3 6 4 9 7 8 1
5 0 2 3 6 4 9 7 8 1
5 1 2 3 6 4 9 7 8 0
5 1 2 3 6 4 0 7 8 9
5 1 2 3 0 4 6 7 8 9
5 1 2 3 4 0 6 7 8 9
0 1 2 3 4 5 6 7 8 9
为了快速找到元素位置,用pos数组存储每个值的位置。问题即转化为:如何修改pos数组的值,使得所有的pos[i] = i。
变换的方法是:
- 当pos[0] = i,且 i != 0 时,持续交换pos[0] 和 pos[i];
- 当pos[0] = 0,检查是否仍存在错位。设置checkPos表示已检查无错位的位置,初始化为1,每次检查都从checkPos向后检查。若有错位i(如上例中第3步变换后),则交换pos[0] 和 pos[i]然后重新执行1中的操作。直到pos[0] =0 且数列中不存在错位为止。
注意,如果不记录已检查位置,每次都从头检查的话,测试点1、2会超时。
代码
#include <iostream>
#include <vector>
using namespace std;
int main(){
int n;
scanf("%d", &n);
vector<int> pos(n);
for (int i=0; i<n; i++){
int temp;
scanf("%d", &temp);
pos[temp] = i;
}
int count = 0;
int checkPos = 1;
bool sorted = false;
while (!sorted){
//swap(0, i)
while (pos[0] != 0){
int i = pos[0];
pos[0] = pos[i];
pos[i] = i;
count++;
}
//检查是否仍存在错位
while (checkPos<n && pos[checkPos]==checkPos){
checkPos++;
}
if (checkPos==n){
sorted = true;
}
else{
//swap(0, i)
pos[0] = pos[checkPos];
pos[checkPos] = 0;
count++;
}
}
printf("%d\n", count);
return 0;
}