matlab滤波器fdatool,各种类型滤波器设计(fdatool,原理,matlab代码)

数据处理

对于一组数据,只有时间戳和加速度,怎么样进行傅立叶变换分析? 参考信号处理内容,首先模拟一组数据进行分析。

以下数据两个频率为1Hz与100Hz,经过采样和傅立叶变化之后,捕捉到信号对应的频率为1Hz与100Hz(还有其他信号)。

close all;

t = 0:0.01:3; % 真实世界时间

f1 = 1; % 频率

f2 = 200;

f3 = 50; % 设定两个复信号

f4 = -60;

F = @(t)(sin(2*pi*f1*t) + sin(2*pi*f2*t)+ exp(j*2*pi*f3*t) + exp(j*2*pi*f4*t)); % 信号函数

y = F(t); % 生成信号

% figure;subplot(3,1,1);plot(t , y); % 信号真实图

fs = 1000; % 采样率

dtc = 1/fs; % 采样间隔时间

tc = 0:dtc:4; % 采样时间序列

yc = F(tc); % 采样信号序列

%% 傅立叶变换以及画图

figure;

N = length(yc);

x = (-N/2+1:N/2)/N*fs;

semilogy(x , abs(fftshift(fft(yc))));

我们可以看到,复信号在幅度谱上表现是只有单侧有信号。而实信号在幅度谱上两侧均有信号。

那么如何对数据进行信号处理呢?如何用fdatool设计滤波器?

fad4439b4316eb5f69a461b34e831a43.png

频域上表现如下:

d48785dba1e3b839604f5b01afb25638.png

设计上述高通滤波器,与所有数据进行卷积,完成滤波。得到结果如下:

69a5a1e2d7b39b10dd5f9671e05916a7.png

Fs = 1000; % Sampling Frequency

Fstop = 50; % Stopband Frequency

Fpass = 100; % Passband Frequency

Dstop = 0.0001; % Stopband Attenuation

Dpass = 0.057501127785; % Passband Ripple

dens = 20; % Density Factor

% Calculate the order from the parameters using FIRPMORD.

[N, Fo, Ao, W] = firpmord([Fstop, Fpass]/(Fs/2), [0 1], [Dstop, Dpass]);

% Calculate the coefficients using the FIRPM function.

b = firpm(N, Fo, Ao, W, {dens});

Hd = dfilt.dffir(b);

yf = conv( b , yc);% 滤波后的信号

信号时域频域的关系如下:

6dfca97845d64248f6a5554412d39993.png

因此经常设计的滤波器一般有如下形式:

H(z)=0.2+0.5z−11−0.2z−1+0.8z−2H(z)=\frac{0.2+0.5 z^{-1}}{1-0.2 z^{-1}+0.8 z^{-2}}H(z)=1−0.2z−1+0.8z−20.2+0.5z−1​

对应代码为:

clear, close all

%% initialize parameters

% 载波频率

samplerate = 1000; % in Hz 采样率

N = 512; % number of points, must be even, better be power of 2

%% define a and b coeffients of H (transfer function)

a = [1 -0.2 0.8]; % denominator terms

b = [0.2 0.5]; % numerator terms

%% option 1:compute the spectrum of H using fft

% H = fft(b,N)./fft(a,N); % compute H(f)

%

% mag = 20*log10(abs(H)); % get magnitude of spectrum in dB

% % 因为相位的变化会带来一定的相位偏移

% phase = angle(H)*2*pi; % get phase in deg.

%

% faxis = samplerate/2*linspace(0,1,N/2); % the axis of frequency

%% 或者下面:

N = 512;

[h1 , ftp] = freqz(b,1,N,fs);

mag = 20*log10(abs(h1)); % get magnitude of spectrum in dB

phase = angle(h1)/pi*180; % get phase in deg.

figure,

subplot(2,1,1),plot(ftp,mag)

xlabel('Frequency (Hz)'),ylabel('Magnitude (dB)')

grid on

subplot(2,1,2),plot(ftp,phase,'r')

xlabel('Frequency (Hz)'),ylabel('Phase (deg.)')

grid on

FIR滤波器

特点如下:

5695fb7f8f9af1de8845152d30fd7779.png

转换函数为:

H(z)=∑k=0Kbkz−kH(z)=\sum_{k=0}^{K} b_{k} z^{-k}H(z)=∑k=0K​bk​z−k

对于上述fdatool设计的FIR滤波器,a为0,所以只用b进行卷积运算。下面画出了相位谱和幅度谱,下面作为示例。

%% 设计滤波器(FIR)

N = 512;

a = 1;

H = fft(b,N)/fft(a,N); % H矩阵

mag = 20*log10(abs(H)); % get magnitude of spectrum in dB 幅值

phase = angle(H)*2*pi; % get phase in deg.相位

faxis = samplerate/2*linspace(0,1,N/2); % the axis of frequency

%% plot the spectrum of H

figure,

subplot(2,1,1),plot(faxis,mag(1:N/2))

xlabel('Frequency (Hz)'),ylabel('Magnitude (dB)')

grid on

subplot(2,1,2),plot(faxis,phase(1:N/2),'r')

xlabel('Frequency (Hz)'),ylabel('Phase (deg.)')

grid on

滤波器设计离不开这个函数,具有特殊性质的函数sinc(t),如下:

2d532dfde406b9b444d33591fcca47e5.png

9541f0b71e5d9a9ba57a602233a0db5d.png

所以设计以下低通滤波器:

b(k)=sin⁡[2πfcTs(k−L/2)]π(k−L/2)b(k)=\frac{\sin \left[2 \pi f_{c} T_{s}(k-L / 2)\right]}{\pi(k-L / 2)}b(k)=π(k−L/2)sin[2πfc​Ts​(k−L/2)]​

fc代表截断频率,代码如下:

L = 57;

fs = 1000;

f2 = 100;

for k = 1:L

b(k) = sin(2*pi*f2*dtc*(k - L/2))/(pi*(k-L/2));

end

figure;

N = length(b);

x = (-N/2+1:N/2)/N*fs;

semilogy( x,abs(fftshift(fft(b))))

ca8147d526eb3292ce9371081a1be160.png

% 加窗

faxis = fs/2*linspace(0,1,N/2);

HW = fft(b.*hamming( length(b) )',N);

mag = 20*log10(abs(HW));

figure

plot(faxis,mag(1:N/2))

xlabel('Frequency (Hz)'),ylabel('Magnitude (dB)')

grid on

设计过程,可以参考下面:

33c58262858010d013ae5d453d565d90.png

那么如何利用matlab代码生成滤波器?

fl=75; % low-cutoff frequency

fh=165; % high-cutoff frequency

trans_width=20; % in Hz. It is a half of transition band. if data length is not long enough, increase trans_width

rp=1; % in dB

rs=40; % in dB

%%% lowpass filter

[data_3sFIR,forder] = filter_3sFIR(data,[fl-trans_width fl+trans_width],[1 0],[0.1 0.001],samplerate);

%%% bandpass filter

[data_3sFIR,forder] = filter_3sFIR(data,[fl-trans_width fl+trans_width fh-trans_width fh+trans_width],[0 1 0],[0.001 0.1 0.001],samplerate);

%%% highpass filter

[data_3sFIR,forder] = filter_3sFIR(data,[fh-trans_width fh+trans_width],[0 1],[0.001 0.1],samplerate);

%%% bandstop filter

[data_3sFIR,forder] = filter_3sFIR(data,[fl-trans_width fl+trans_width fh-trans_width fh+trans_width],[1 0 1],[0.1 0.001 0.1],samplerate);

IIR 无限滤波器

9d20f5f266941a6012554cb4b61d7bee.png

%%% lowpass filter

[data_3sIIR,forder] = filter_3sIIR(data,fl-trans_width,fl+trans_width,rp,rs,samplerate,'low');

%%% bandpass filter

[data_3sIIR,forder] = filter_3sIIR(data,[fl+trans_width fh-trans_width],[fl-trans_width fh+trans_width],rp,rs,samplerate,'bandpass');

%%% highpass filter

[data_3sIIR,forder] = filter_3sIIR(data,fh+trans_width,fh-trans_width,rp,rs,samplerate,'high');

%%% bandstop filter

[data_3sIIR,forder] = filter_3sIIR(data,[fl-trans_width fh+trans_width],[fl+trans_width fh-trans_width],rp,rs,samplerate,'stop');

%% 简单如下

%% filter

sigfilter1=filter_2sIIR(EEGdata',fh,samplerate,forder,'low')';

sigfilter2=filter_2sIIR(EEGdata',fl,samplerate,forder,'high')';

sigfilter3=filter_2sIIR(EEGdata',[fl fh],samplerate,forder,'bandpass')';

小波变换

当信号随着时间发生变化时,可能信号的频率随着时间在不断增大,如何观测信号中的频率?其中低频的层粉需要较长的时间测量。

大概得到如下的结果:

92899a9a78c8608cecc19fb010c4e650.png

滤波器设计

容易想到的是,在这里做的数据的卷积处理,放在c语言中肯定是不合理的。那么在轨检模型中是如何完成计算的?怎么样与之同步起来?

下面给出了两个滤波器设计:

% FMIctrl中的滤波器幅频频特性

% ---------- 10 Hz(对于什么?) -------

fs = 500;

N = 80000;

b10 = [40000 0 0];

a10 = [4010000 -7600000 3610000];

[h10 f10]= freqz(b10,a10,N,'whole',fs);

%

mag = 20*log10(abs(h10)); % get magnitude of spectrum in dB

phase = angle(h10)/pi*180; % get phase in deg.

figure,

subplot(2,1,1),semilogx(f10,mag)

xlabel('Frequency (Hz)'),ylabel('Magnitude (dB)')

grid on

subplot(2,1,2),semilogx(f10,phase,'r')

xlabel('Frequency (Hz)'),ylabel('Phase (deg.)')

grid on

suptitle('10Hz');

% ----------20 Hz-----------

coef1 = 40000;coef2= 1800000;

coef3=810000 ;coef4=10340000 ;

b20 = [coef1 0 0];

a20 = [coef4 -coef2 coef3];

figure();

[h20 f20]= freqz(b20,a20,N,'whole',fs);

subplot(2,1,1);semilogx(f20,20*log10(abs(h20)));xlabel('Frequency (Hz)'),ylabel('Magnitude (dB)')

subplot(2,1,2);semilogx(f20,angle(h20)*180/pi);xlabel('Frequency (Hz)'),ylabel('Phase (deg.)')

suptitle('20Hz');grid on;

模拟滤波器与数字滤波

模拟滤波器如下所示:

H(s)=B(s)A(s)=b(1)sn+b(2)sn−1+⋯+b(n+1)a(1)sm+a(2)sm−1+⋯+a(m+1)H(s)=\frac{B(s)}{A(s)}=\frac{b(1) s^{n}+b(2) s^{n-1}+\dots+b(n+1)}{a(1) s^{m}+a(2) s^{m-1}+\dots+a(m+1)}H(s)=A(s)B(s)​=a(1)sm+a(2)sm−1+⋯+a(m+1)b(1)sn+b(2)sn−1+⋯+b(n+1)​

由于存在:

λ=vttbs\lambda=v t_{t b s}λ=vttbs​

二阶低通滤波器代码如下,该滤波器是从模拟滤波器转换而来。

% 二阶低通滤波器

w2 = (10^5)/(2^14);

v1= 15/3.6;

t1= 0.25/v1;

w2t1 = w2*t1;

b2 = [(w2t1)^2 0 0];

a2 = [1+w2t1+(w2t1)^2 ,- (2 + w2t1) ,1];

[h2 f2] = freqz(b2,a2,800000,500);

figure;suptitle ('二阶数字抗混叠滤波器和补偿滤波器');

semilogx(v1./f2,20*log10(abs(h2)));hold on;

标签:滤波器,filter,width,matlab,fh,trans,data,fdatool

来源: https://blog.csdn.net/chenshiming1995/article/details/104802212