pytorch入门14:Sequential的使用

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Linear, Flatten
from torch.utils.tensorboard import SummaryWriter


class Zkl(nn.Module):
    def __init__(self):
        super(Zkl, self).__init__()
        # self.conv1 = Conv2d(3,32,5,padding=2)
        # self.maxpool1 = MaxPool2d(2)
        # self.conv2 = Conv2d(32,32,5,padding=2)
        # self.maxpool2 = MaxPool2d(2)
        # self.conv3 = Conv2d(32,64,5,padding=2)
        # self.maxpool3 = MaxPool2d(2)
        # self.flatten = Flatten()
        # self.linear1 = Linear(1024,64)
        # self.linear2 = Linear(64,10)

        self.modle1 = nn.Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64,10)
        )

    def forward(self,x):
        # x = self.conv1(x)
        # x = self.maxpool1(x)
        # x = self.conv2(x)
        # x = self.maxpool2(x)
        # x = self.conv3(x)
        # x = self.maxpool3(x)
        # x = self.flatten(x)
        # x = self.linear1(x)
        # x = self.linear2(x)
        x = self.modle1(x)
        return x

zkl = Zkl()
#print(zkl)
# 以下是为了测试一下构建的网络是否正确
input = torch.ones((64,3,32,32))
output = zkl(input)
print(output.shape)

writer = SummaryWriter('sequential_log')
writer.add_graph(zkl,input)
writer.close()


版权声明:本文为qq_42360017原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。