在电商网站中,订单的支付作为直接与营销收入挂钩的一环,在业务流程中非常重要。对于订单而言,为了正确控制业务流程,也为了增加用户的支付意愿,网站一般会设置一个支付失效时间,超过一段时间不支付的订单就会被取消。另外,对于订单的支付,我们还应保证用户支付的正确性,这可以通过第三方支付平台的交易数据来做一个实时对账。在接下来的内容中,我们将实现这两个需求。
1、模块创建和数据准备
同样地,在 UserBehaviorAnalysis 下新建一个 maven module 作为子项目,命名为
OrderTimeoutDetect。在这个子模块中,我们同样将会用到 flink 的 CEP 库来实现事件流的模式匹配,所以需要
在 pom 文件中引入 CEP 的相关依赖:
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-cep _${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>2、代码实现
在电商平台中,最终创造收入和利润的是用户下单购买的环节;更具体一点,是用户真正完成支付动作的时
候。用户下单的行为可以表明用户对商品的需求,但在现实中,并不是每次下单都会被用户立刻支付。当拖延一段
时间后,用户支付的意愿会降低。所以为了让用户更有紧迫感从而提高支付转化率,同时也为了防范订单支付环节
的安全风险,电商网站往往会对订单状态进行监控,设置一个失效时间(比如 15 分钟),如果下单后一段时间仍
未支付,订单就会被取消。
2.1 使用 CEP 实现
我们首先还是利用 CEP 库来实现这个功能。我们先将事件流按照订单号 orderId分流,然后定义这样的一个
事件模式:在 15 分钟内,事件“create”与“pay”非严格紧邻:
Pattern<OrderEvent, OrderEvent> orderPayPattern =
Pattern.<OrderEvent>begin("create").where(new SimpleCondition<OrderEvent>() {
@Override
public boolean filter(OrderEvent value) throws Exception {
return "create".equals(value.getEventType());
}
})
.followedBy("pay")
.where(new SimpleCondition<OrderEvent>() {
@Override
public boolean filter(OrderEvent value) throws Exception {
return "pay".equals(value.getEventType());
}
})
.within(Time.minutes(15));这样调用.select 方法时,就可以同时获取到匹配出的事件和超时未匹配的事件了。 在 src/main/java 下继续
创建 OrderTimeout 类,定义 POJO 类 OrderEvent,这是输入的订单事件流;另外还有 OrderResult,这是输出
显示的订单状态结果。订单数据也本应该从 UserBehavior 日志里提取,由于 UserBehavior.csv 中没有做相关埋
点, 我们从另一个文件 OrderLog.csv 中读取登录数据。
完整代码如下:
OrderTimeoutDetect/src/main/java/OrderTimeout.java
public class OrderTimeout {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
env.setParallelism(1);
// 读取数据
URL resource = OrderTimeout.class.getResource("/OrderLog.csv");
DataStream<OrderEvent> orderEventStream = env.readTextFile(resource.getPath()).map(line -> {
String[] fields = line.split(",");
return new OrderEvent(new Long(fields[0]), fields[1], fields[2], new Long(fields[3]));
}).assignTimestampsAndWatermarks(new AscendingTimestampExtractor<OrderEvent>() {
@Override
public long extractAscendingTimestamp(OrderEvent element) {
return element.getTimestamp() * 1000L;
}
});
// 定义一个带匹配时间窗口的模式
Pattern<OrderEvent, OrderEvent> orderPayPattern = Pattern.<OrderEvent>begin("create")
.where(new SimpleCondition<OrderEvent>() {
@Override
public boolean filter(OrderEvent value) throws Exception {
return "create".equals(value.getEventType());
}
}).followedBy("pay").where(new SimpleCondition<OrderEvent>() {
@Override
public boolean filter(OrderEvent value) throws Exception {
return "pay".equals(value.getEventType());
}
}).within(Time.minutes(15));
PatternStream<OrderEvent> patternStream = CEP.pattern(orderEventStream.keyBy(OrderEvent::getOrderId),
orderPayPattern);
// 定义一个输出标签
OutputTag<OrderResult> orderTimeoutOutputTag = new OutputTag<OrderResult>("orderTimeout") {
};
SingleOutputStreamOperator<OrderResult> resultStream = patternStream.select(orderTimeoutOutputTag,
new OrderTimeoutSelect(), new OrderPaySelect());
resultStream.print("payed");
resultStream.getSideOutput(orderTimeoutOutputTag).print("timeout");
env.execute("Order Timeout Detect Job");
}
// 自定义超时拣选函数
public static class OrderTimeoutSelect implements PatternTimeoutFunction<OrderEvent, OrderResult> {
@Override
public OrderResult timeout(Map<String, List<OrderEvent>> pattern, long timeoutTimestamp) throws Exception {
Long timeoutOrderId = pattern.get("create").iterator().next().getOrderId();
return new OrderResult(timeoutOrderId, "timeout");
}
}
// 自定义匹配拣选函数
public static class OrderPaySelect implements PatternSelectFunction<OrderEvent, OrderResult> {
@Override
public OrderResult select(Map<String, List<OrderEvent>> pattern) throws Exception {
Long payedOrderId = pattern.get("pay").iterator().next().getOrderId();
return new OrderResult(payedOrderId, "payed");
}
}
}2.2 使用 Process Function 实现
我们同样可以利用 Process Function,自定义实现检测订单超时的功能。为了简化问题,我们只考虑超时报
警的情形,在 pay 事件超时未发生的情况下,输出超时报警信息。
一个简单的思路是,可以在订单的 create 事件到来后注册定时器,15 分钟后触发;然后再用一个布尔类型的
Value 状态来作为标识位,表明 pay 事件是否发生过。如果 pay 事件已经发生,状态被置为 true,那么就不再需
要做什么操作;而如果 pay 事件一直没来,状态一直为 false,到定时器触发时,就应该输出超时报警信息。
具体代码实现如下:
OrderTimeoutDetect/src/main/java/OrderTimeoutWithoutCep.java
public class OrderTimeoutWithoutCep {
private final static OutputTag<OrderResult> orderTimeoutOutputTag = new OutputTag<OrderResult>("orderTimeout") {};
public static void main(String[] args) throws Exception{
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
env.setParallelism(1);
// 读取数据
URL resource = OrderTimeout.class.getResource("/OrderLog.csv");
DataStream<OrderEvent> orderEventStream = env.readTextFile(resource.getPath())
.map( line -> {
String[] fields = line.split(",");
return new OrderEvent(new Long(fields[0]), fields[1],fields[2], new Long(fields[3]));
})
.assignTimestampsAndWatermarks(new AscendingTimestampExtractor<OrderEvent>() {
@Override
public long extractAscendingTimestamp(OrderEvent element) {
return element.getTimestamp() 1000L;
}
});
// 自定义处理函数
SingleOutputStreamOperator<OrderResult> resultStream = orderEventStream.keyBy(OrderEvent::getOrderId).process(new OrderPayMatchDetect());
resultStream.print("payed");
resultStream.getSideOutput(orderTimeoutOutputTag).print("timeout");
env.execute("Order Timeout Detect without CEP Job");
}
//实现自定义 KeyedProcessFunction
public static class OrderPayMatchDetect extends KeyedProcessFunction<Long,OrderEvent, OrderResult>{
// 定义状态
ValueState<Boolean> isPayedState;
ValueState<Boolean> isCreatedState;
ValueState<Long> timerTsState;
@Override
public void open(Configuration parameters) throws Exception {
isPayedState = getRuntimeContext().getState(new ValueStateDescriptor<Boolean>("is-payed", Boolean.class, false));
isCreatedState = getRuntimeContext().getState(new ValueStateDescriptor<Boolean>("is-created", Boolean.class, false));
timerTsState = getRuntimeContext().getState(new ValueStateDescriptor<Long>("timer-ts", Long.class));
}
@Override
public void processElement(OrderEvent value, Context ctx, Collector<OrderResult> out) throws Exception {
Boolean isPayed = isPayedState.value();
Boolean isCreated = isCreatedState.value();
Long timerTs = timerTsState.value();
if( "create".equals(value.getEventType()) ){
if( isPayed ){
out.collect( new OrderResult( value.getOrderId(), "payed successfully" ) );
isPayedState.clear();
timerTsState.clear();
ctx.timerService().deleteEventTimeTimer(timerTs);
}else {
Long ts = ( value.getTimestamp() + 15 60 ) 1000L;
ctx.timerService().registerEventTimeTimer(ts);
isCreatedState.update(true);
timerTsState.update(ts);
}
}else if( "pay".equals(value.getEventType()) ){
if( isCreated ){
if( value.getTimestamp() 1000L < timerTs ){
out.collect( new OrderResult( value.getOrderId(),"payed successfully" ));
}else{
ctx.output(orderTimeoutOutputTag, new OrderResult( value.getOrderId(), "payed but already timeout" ));
}
isCreatedState.clear();
timerTsState.clear();
ctx.timerService().deleteEventTimeTimer(timerTs);
}else{
ctx.timerService().registerEventTimeTimer( value.getTimestamp()* 1000L );
isPayedState.update(true);
timerTsState.update( value.getTimestamp()* 1000L );
}
}
}
@Override
public void onTimer(long timestamp, OnTimerContext ctx,Collector<OrderResult> out) throws Exception {
if( isPayedState.value() ){
ctx.output(orderTimeoutOutputTag,new OrderResult(ctx.getCurrentKey(), "already payed but not found created log"));
}else{
ctx.output(orderTimeoutOutputTag,new OrderResult(ctx.getCurrentKey(), "order pay timeout"));
}
isPayedState.clear();
isCreatedState.clear();
timerTsState.clear();
}
}
}3、来自两条流的订单交易匹配
对于订单支付事件,用户支付完成其实并不算完,我们还得确认平台账户上是否到账了。而往往这会来自不
同的日志信息,所以我们要同时读入两条流的数据来做 合 并 处 理 。 这 里 我 们 利 用 connect 将 两 条 流 进 行
连 接 , 然 后 用 自 定 义 的CoProcessFunction 进行处理。
具体代码如下:
TxMatchDetect/src/main/java/TxMatch.java
public class TxPayMatch {
private final static OutputTag<OrderEvent> unmatchedPays = new OutputTag<OrderEvent>("unmatchedPays") {
};
private final static OutputTag<ReceiptEvent> unmatchedReceipts = new OutputTag<ReceiptEvent>("unmatchedReceipts") {
};
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
URL orderRes = OrderTimeout.class.getResource("/OrderLog.csv");
DataStream<OrderEvent> orderEventStream = env.readTextFile(orderRes.getPath()).map(line -> {
String[] fields = line.split(",");
return new OrderEvent(new Long(fields[0]), fields[1], fields[2], new Long(fields[3]));
}).assignTimestampsAndWatermarks(new AscendingTimestampExtractor<OrderEvent>() {
@Override
public long extractAscendingTimestamp(OrderEvent element) {
return element.getTimestamp() * 1000L;
}
}).filter(data -> !"".equals(data.getTxId()));
URL receiptRes = OrderTimeout.class.getResource("/ReceiptLog.csv");
DataStream<ReceiptEvent> receiptEventStream = env.readTextFile(receiptRes.getPath()).map(line -> {
String[] fields = line.split(",");
return new ReceiptEvent(fields[0], fields[1], new Long(fields[2]));
}).assignTimestampsAndWatermarks(new AscendingTimestampExtractor<ReceiptEvent>() {
@Override
public long extractAscendingTimestamp(ReceiptEvent element) {
return element.getTimestamp() * 1000L;
}
});
SingleOutputStreamOperator<Tuple2<OrderEvent, ReceiptEvent>> resultStream = orderEventStream
.keyBy(OrderEvent::getTxId).connect(receiptEventStream.keyBy(ReceiptEvent::getTxId))
.process(new TxPayMatchDetect());
resultStream.print("matched");
resultStream.getSideOutput(unmatchedPays).print("unmatchedPays");
resultStream.getSideOutput(unmatchedReceipts).print("unmatchedReceipts");
env.execute("tx pay match job");
}
// 实现自定义的 CoProcessFunction
public static class TxPayMatchDetect
extends CoProcessFunction<OrderEvent, ReceiptEvent, Tuple2<OrderEvent, ReceiptEvent>> {
ValueState<OrderEvent> payState;
ValueState<ReceiptEvent> receiptState;
@Override
public void open(Configuration parameters) throws Exception {
payState = getRuntimeContext().getState(new ValueStateDescriptor<OrderEvent>("pay", OrderEvent.class));
receiptState = getRuntimeContext()
.getState(new ValueStateDescriptor<ReceiptEvent>("receipt", ReceiptEvent.class));
}
@Override
public void processElement1(OrderEvent pay, Context ctx, Collector<Tuple2<OrderEvent, ReceiptEvent>> out)
throws Exception {
ReceiptEvent receipt = receiptState.value();
if (receipt != null) {
out.collect(new Tuple2<>(pay, receipt));
receiptState.clear();
} else {
payState.update(pay);
ctx.timerService().registerEventTimeTimer(pay.getTimestamp() * 1000L + 5000L);
}
}
@Override
public void processElement2(ReceiptEvent receipt, Context ctx,
Collector<Tuple2<OrderEvent, ReceiptEvent>> out) throws Exception {
OrderEvent pay = payState.value();
if (pay != null) {
out.collect(new Tuple2<>(pay, receipt));
payState.clear();
} else {
receiptState.update(receipt);
ctx.timerService().registerEventTimeTimer(receipt.getTimesta
mp() * 1000L + 3000L);
}
}
@Override
public void onTimer(long timestamp, OnTimerContext ctx, Collector<Tuple2<OrderEvent, ReceiptEvent>> out)
throws Exception {
if (payState.value() != null) {
ctx.output(unmatchedPays, payState.value());
}
if (receiptState.value() != null) {
ctx.output(unmatchedReceipts, receiptState.value());
}
payState.clear();
receiptState.clear();
}
}
}