最近在知乎上看到一个不错的GAN的入门案例,于是稍微修改了一下后分享出来!
我们都知道GAN主要用来生成,相比于生成图片,我们这次选择更为简单的生成一个一维函数来大致了解GAN的流程及代码实现。
我们的原始数据为y = 2x^2 + 1,我们让GAN来生成与之接近的分布!

代码:
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
torch.manual_seed(1)
np.random.seed(1)
# 学习率
LR_G = 0.0001
LR_D = 0.0001
BATCH_SIZE = 64
N_IDEAS = 5 # 输入的噪声维度,可以自己设定(经过神经网络后会把维度调整)
ART_COMPONETS = 15 # 噪声输入后的输出维度
PAINT_POINTS = np.stack([np.linspace(-1,1,ART_COMPONETS) for _ in range(BATCH_SIZE)],0) # 我们原始数据的x坐标,-1~1均匀分布
def artist_work():
a = np.ones((BATCH_SIZE,1)) * 2
paints = a * np.power(PAINT_POINTS,2) + (a-1) # y = 2x^2 + 1
paints = torch.from_numpy(paints).float()
return paints
# 网络结构
G = nn.Sequential(
nn.Linear(N_IDEAS,128),
nn.ReLU(),
nn.Linear(128,ART_COMPONETS)
)
D = nn.Sequential(
nn.Linear(ART_COMPONETS,128),
nn.ReLU(),
nn.Linear(128,1),
nn.Sigmoid()
)
#优化器与损失函数
optimizer_G = torch.optim.Adam(G.parameters(),lr=LR_G)
optimizer_D = torch.optim.Adam(D.parameters(),lr=LR_D)
Criterion = torch.nn.BCELoss()
# 开始训练
plt.ion()
G_losses = [] #储存了损失方便自己画图可视化
D_losses = []
for step in range(10000):
artist_painting = artist_work()
G_idea = torch.randn(BATCH_SIZE,N_IDEAS)
G_paintings = G(G_idea)
pro_atrist0 = D(artist_painting)
pro_atrist1 = D(G_paintings)
G_loss = -1/torch.mean(torch.log(1.-pro_atrist1))
G_losses.append(G_loss.item())
D_loss = Criterion(pro_atrist0, torch.ones_like( pro_atrist0))+Criterion(pro_atrist1, torch.zeros_like(pro_atrist1))
D_losses.append(D_loss.item())
optimizer_G.zero_grad()
G_loss.backward(retain_graph=True) #因为D的反向传播需要用到G,所以设置为True
optimizer_D.zero_grad()
D_loss.backward( )
optimizer_G.step()
optimizer_D.step()
if step % 200 == 0: # plotting
plt.cla()
plt.plot(PAINT_POINTS[0], G_paintings.data.numpy()[0], c='#4AD631', lw=3, label='Generated painting',)
plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='original data')
plt.text(-.5, 2.3, 'D accuracy=%.2f (0.5 for D to converge)' % pro_atrist0.data.numpy().mean(), fontdict={'size': 13})
# plt.text(-.5, 2, 'G_loss= %.2f ' % G_loss.data.numpy(), fontdict={'size': 13})
plt.ylim((0, 3));plt.legend(loc='upper right', fontsize=10);plt.draw();plt.pause(0.1)
print('训练结束')
plt.ioff()
plt.show()结果:
可以看到在网络结构很简单的情况下还是可以取得一个不错的结果!

参考资料:
版权声明:本文为qq_55621259原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。