计算建模是HIT大三秋季计院计算机科学方向的专业核心课,内容cover了随机过程、优化、信号处理等topic
这里是笔者对课余参考的一些补充材料的collection,主要是一些概念
个人向的意思是,本文不对内容的严谨性与正确性负责
Bayesian Inference
MLE & MAP : 略
Stochastic Processes
A random process(stochastic process) is a collection of random variables usually indexed by time.
A random process is a random function of time.
Stationary
Similar definitions (Strict-sense stationary / WSS) apply for discrete-time random process.
WSS is more commonly observed and used.
Gaussian Process
Gaussian processes can be seen as an infinite-dimensional generalization of multivariate normal distributions.
HMM
Definition
Probabilities Calculation
- given model M = ( A , B , π ) M=(A,B,\pi)M=(A,B,π) (where A AA is the transition matrix, B BB is the emission matrix, π \piπ is the initial value vector) and observation sequence Y YY
forward & backward DP:
- α t ( i ) = P ( Y 1 , Y 2 , … , Y t , X t = q i ∣ M ) \alpha_t(i)=P(Y_1,Y_2,\dots,Y_t,X_t=q_i | M)αt(i)=P(Y1,Y2,…,Yt,Xt=qi∣M)
- β t ( i ) = P ( Y t , Y t + 1 , … , Y T ∣ X t = q i , M ) \beta_t(i)=P(Y_t, Y_{t+1}, \dots, Y_T | X_t=q_i, M)βt(i)=P(Yt,Yt+1,…,YT∣Xt=qi,M)
Model Learning
- EM algorithm
Decoding
- Viterbi algorithm (DP)
Reference
Introduction to Probabilities, Statistics and Random Processes
Wikipedia
版权声明:本文为lyd_7_29原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。