转自:https://www.cnblogs.com/hangy/p/12569157.html
白平衡:即白色的平衡,最早用于摄像领域技术,可以用来解决色彩还原和调处理的一系列问题。
网上参考别人python版白平衡的运算,索性自己优化了下代码。用numpy矩阵运算取代原有的通道运算,提高运行速度。
tip:用python图像处理尽可能用numpy运算(分通道写法会使处理速度变慢,特别是较大图片),而在C++中的图像处理需要分通道处理。
下面是优化过整理过的代码:
import cv2
import numpy as np
def white_balance(img, mode=1):
"""白平衡处理(默认为1均值、2完美反射、3灰度世界、4基于图像分析的偏色检测及颜色校正、5动态阈值)"""
# 读取图像
b, g, r = cv2.split(img)
# 均值变为三通道
h, w, c = img.shape
if mode == 1:
# 默认均值 ---- 简单的求均值白平衡法
b_avg, g_avg, r_avg = cv2.mean(b)[0], cv2.mean(g)[0], cv2.mean(r)[0]
# 求各个通道所占增益
k = (b_avg + g_avg + r_avg) / 3
kb, kg, kr = k / b_avg, k / g_avg, k / r_avg
b = cv2.addWeighted(src1=b, alpha=kb, src2=0, beta=0, gamma=0)
g = cv2.addWeighted(src1=g, alpha=kg, src2=0, beta=0, gamma=0)
r = cv2.addWeighted(src1=r, alpha=kr, src2=0, beta=0, gamma=0)
output_img = cv2.merge([b, g, r])
elif mode == 2:
# 完美反射白平衡 ---- 依赖ratio值选取而且对亮度最大区域不是白色的图像效果不佳。
output_img = img.copy()
sum_ = np.double() + b + g + r
hists, bins = np.histogram(sum_.flatten(), 766, [0, 766])
Y = 765
num, key = 0, 0
ratio = 0.01
while Y >= 0:
num += hists[Y]
if num > h * w * ratio / 100:
key = Y
break
Y = Y - 1
sumkey = np.where(sum_ >= key)
sum_b, sum_g, sum_r = np.sum(b[sumkey]), np.sum(g[sumkey]), np.sum(r[sumkey])
times = len(sumkey[0])
avg_b, avg_g, avg_r = sum_b / times, sum_g / times, sum_r / times
maxvalue = float(np.max(output_img))
output_img[:, :, 0] = output_img[:, :, 0] * maxvalue / int(avg_b)
output_img[:, :, 1] = output_img[:, :, 1] * maxvalue / int(avg_g)
output_img[:, :, 2] = output_img[:, :, 2] * maxvalue / int(avg_r)
elif mode == 3:
# 灰度世界假设
b_avg, g_avg, r_avg = cv2.mean(b)[0], cv2.mean(g)[0], cv2.mean(r)[0]
# 需要调整的RGB分量的增益
k = (b_avg + g_avg + r_avg) / 3
kb, kg, kr = k / b_avg, k / g_avg, k / r_avg
ba, ga, ra = b * kb, g * kg, r * kr
output_img = cv2.merge([ba, ga, ra])
elif mode == 4:
# 基于图像分析的偏色检测及颜色校正
I_b_2, I_r_2 = np.double(b) ** 2, np.double(r) ** 2
sum_I_b_2, sum_I_r_2 = np.sum(I_b_2), np.sum(I_r_2)
sum_I_b, sum_I_g, sum_I_r = np.sum(b), np.sum(g), np.sum(r)
max_I_b, max_I_g, max_I_r = np.max(b), np.max(g), np.max(r)
max_I_b_2, max_I_r_2 = np.max(I_b_2), np.max(I_r_2)
[u_b, v_b] = np.matmul(np.linalg.inv([[sum_I_b_2, sum_I_b], [max_I_b_2, max_I_b]]), [sum_I_g, max_I_g])
[u_r, v_r] = np.matmul(np.linalg.inv([[sum_I_r_2, sum_I_r], [max_I_r_2, max_I_r]]), [sum_I_g, max_I_g])
b0 = np.uint8(u_b * (np.double(b) ** 2) + v_b * b)
r0 = np.uint8(u_r * (np.double(r) ** 2) + v_r * r)
output_img = cv2.merge([b0, g, r0])
elif mode == 5:
# 动态阈值算法 ---- 白点检测和白点调整
# 只是白点检测不是与完美反射算法相同的认为最亮的点为白点,而是通过另外的规则确定
def con_num(x):
if x > 0:
return 1
if x < 0:
return -1
if x == 0:
return 0
yuv_img = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb)
# YUV空间
(y, u, v) = cv2.split(yuv_img)
max_y = np.max(y.flatten())
sum_u, sum_v = np.sum(u), np.sum(v)
avl_u, avl_v = sum_u / (h * w), sum_v / (h * w)
du, dv = np.sum(np.abs(u - avl_u)), np.sum(np.abs(v - avl_v))
avl_du, avl_dv = du / (h * w), dv / (h * w)
radio = 0.5 # 如果该值过大过小,色温向两极端发展
valuekey = np.where((np.abs(u - (avl_u + avl_du * con_num(avl_u))) < radio * avl_du)
| (np.abs(v - (avl_v + avl_dv * con_num(avl_v))) < radio * avl_dv))
num_y, yhistogram = np.zeros((h, w)), np.zeros(256)
num_y[valuekey] = np.uint8(y[valuekey])
yhistogram = np.bincount(np.uint8(num_y[valuekey].flatten()), minlength=256)
ysum = len(valuekey[0])
Y = 255
num, key = 0, 0
while Y >= 0:
num += yhistogram[Y]
if num > 0.1 * ysum: # 取前10%的亮点为计算值,如果该值过大易过曝光,该值过小调整幅度小
key = Y
break
Y = Y - 1
sumkey = np.where(num_y > key)
sum_b, sum_g, sum_r = np.sum(b[sumkey]), np.sum(g[sumkey]), np.sum(r[sumkey])
num_rgb = len(sumkey[0])
b0 = np.double(b) * int(max_y) / (sum_b / num_rgb)
g0 = np.double(g) * int(max_y) / (sum_g / num_rgb)
r0 = np.double(r) * int(max_y) / (sum_r / num_rgb)
output_img = cv2.merge([b0, g0, r0])
else:
raise TypeError('mode should be in [1,2,3,4,5]. Got {}'.format(mode))
output_img = np.uint8(np.clip(output_img, 0, 255))
return output_img