Prometheus容器化部署,结合Grafan实现图形可视化监控

Prometheus容器化部署,结合Grafan实现图形可视化监控

1 Prometheus、Grafan 容器化部署

环境说明:

主机名IP
master192.168.200.145
node1192.168.200.144

1.1在master主机上安装docker服务

//配置网络源
[root@master ~]# curl -o /etc/yum.repos.d/CentOS-Base.repo https://mirrors.aliyun.com/repo/Centos-8.repo

//配置docker-ce源
[root@master ~]# cd /etc/yum.repos.d/
[root@master yum.repos.d]# curl -o docker-ce.repo https://mirrors.tuna.tsinghua.edu.cn/docker-ce/linux/centos/docker-ce.repo

//安装 docker-ce 以及依赖包和工具
[root@master ~]# dnf -y install yum-utils device-mapper-persistent-data lvm2
[root@master ~]# yum -y install docker-ce --allowerasing

//查看docker的版本信息
[root@master ~]# docker version
Client: Docker Engine - Community
 Version:           20.10.12
 API version:       1.41
 Go version:        go1.16.12
 Git commit:        e91ed57
 Built:             Mon Dec 13 11:45:22 2021
 OS/Arch:           linux/amd64
 Context:           default
 Experimental:      true

//配置docker镜像加速器
[root@master ~]# mkdir -p /etc/docker
[root@master ~]# vim /etc/docker/daemon.json
{
          "registry-mirrors": ["https://a74l47xi.mirror.aliyuncs.com"]     //此处的网址是个人账户分配的
}
[root@master ~]# systemctl daemon-reload
[root@master ~]# systemctl restart docker

2 创建prometheus容器

//拉取prom/Prometheus官方镜像
[root@master ~]# docker pull prom/prometheus
Using default tag: latest
latest: Pulling from prom/prometheus
3cb635b06aa2: Already exists 
34f699df6fe0: Pull complete 
33d6c9635e0f: Pull complete 
f2af7323bed8: Pull complete 
c16675a6a294: Pull complete 
827843f6afe6: Pull complete 
3d272942eeaf: Pull complete 
7e785cfa34da: Pull complete 
05e324559e3b: Pull complete 
170620261a59: Pull complete 
ec35f5996032: Pull complete 
5509173eb708: Pull complete 
Digest: sha256:cb9817249c346d6cfadebe383ed3b3cd4c540f623db40c4ca00da2ada45259bb
Status: Downloaded newer image for prom/prometheus:latest
docker.io/prom/prometheus:latest
[root@master ~]# 


//将prometheus的安装包上传至node1中,解压后将prometheus.yaml配置文件传输到master主机的/opt目录中
[root@node1 ~]# ls
anaconda-ks.cfg  prometheus-2.31.1.linux-amd64.tar.gz
[root@node1 ~]# tar xf prometheus-2.31.1.linux-amd64.tar.gz 
[root@node1 ~]# cd prometheus-2.31.1.linux-amd64
[root@node1 prometheus-2.31.1.linux-amd64]# ls
console_libraries  LICENSE  prometheus      promtool
consoles           NOTICE   prometheus.yml
[root@node1 prometheus-2.31.1.linux-amd64]# scp prometheus.yml 192.168.200.145:/opt/

//在master主机查看
[root@master ~]# ls /opt/
prometheus.yml
[root@master ~]#

//运行prometheus 容器,并进行端口和配置文件映射,设置开机自启
docker run -d --name prometheus --restart always -p 9090:9090 -v /opt/prometheus.yml:/etc/prometheus/prometheus.yml prom/prometheus

[root@master ~]# docker ps |grep prometheus
58dc2f126346   prom/prometheus                                     "/bin/prometheus --c…"   20 seconds ago   Up 19 seconds   0.0.0.0:9090->9090/tcp, :::9090->9090/tcp   prometheus
[root@master ~]# 

访问网页测试:
IP+端口(9090)
在这里插入图片描述
在这里插入图片描述

3 Prometheus如何监控其他节点

  • Prometheus可以从Kubernetes集群的各个组件中采集数据,比如kubelet中自带的cadvisor,api-server等,而node-export就是其中一种来源

  • Exporter是Prometheus的一类数据采集组件的总称。它负责从目标处搜集数据,并将其转化为Prometheus支持的格式。与传统的数据采集组件不同的是,它并不向中央服务器发送数据,而是等待中央服务器主动前来抓取,默认的抓取地址为http://CURRENT_IP:9100/metrics

  • node-exporter用于采集服务器层面的运行指标,包括机器的loadavg、filesystem、meminfo等基础监控,类似于传统主机监控维度的zabbix-agent

  • 使用node-exporter去采集信息,最后再将信息传给Prometheus,从而实现不同节点监控。

4 监控node1节点

//将安装包传入node1主机中,解压后,重命名
[root@node1 ~]# ls
anaconda-ks.cfg  node_exporter-1.3.0.linux-amd64.tar.gz
[root@node1 ~]# tar xf node_exporter-1.3.0.linux-amd64.tar.gz  -C /usr/local/
[root@node1 ~]# mv node_exporter-1.3.0.linux-amd64 node_exporter

[root@node1 ~]# cd /usr/local/
[root@client local]# ls
bin  etc  games  include  lib  lib64  libexec  node_exporter  prometheus  sbin  share  src
node_exporter
[root@node1 ~]# 

配置service文件

[root@node1 ~]# vim /usr/lib/systemd/system/node_exporter.service
[unit]
Description=The node_exporter Server
After=network.target

[Service]
ExecStart=/usr/local/node_exporter/node_exporter
Restart=on-failure
RestartSec=15s
SyslogIdentifier=node_exporter

[Install]
WantedBy=multi-user.target

//设置自启node_exporter
[root@client local]# systemctl daemon-reload && systemctl enable node_exporter && systemctl restart node_exporter
Created symlink /etc/systemd/system/multi-user.target.wants/node_exporter.service → /usr/lib/systemd/system/node_exporter.service.

查看端口(默认9100端口)
[root@node1 ~]# ss -anlt
State               Recv-Q               Send-Q                             Local Address:Port                             Peer Address:Port              
LISTEN              0                    128                                      0.0.0.0:22                                    0.0.0.0:*                 
LISTEN              0                    128                                         [::]:22                                       [::]:*                 
LISTEN              0                    128                                            *:9100                             

在master 主机上修改prometheus.yaml配置文件,添加被监控节点

//在配置文件最后面添加被监控节点
[root@master ~]#  vi /opt/prometheus.yml 
# my global config
global:
  scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
  evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
  # scrape_timeout is set to the global default (10s).

# Alertmanager configuration
alerting:
  alertmanagers:
    - static_configs:
        - targets:
          # - alertmanager:9093

# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:
  # - "first_rules.yml"
  # - "second_rules.yml"

# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
  # The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
  - job_name: "prometheus"

    # metrics_path defaults to '/metrics'
    # scheme defaults to 'http'.

    static_configs:
      - targets: ["localhost:9090"]
  - job_name: "Linux Server"  //添加此处
    static_configs:                    //添加此处
      - targets: ["192.168.200.145:9100"]   //添加此处,将node_exporter所在的宿主机ip+9100

重启容器

[root@master ~]# systemctl restart docker
[root@master ~]# docker ps |grep prometheus
58dc2f126346   prom/prometheus   "/bin/prometheus --c…"   51 minutes ago   Up 7 minutes   0.0.0.0:9090->9090/tcp, :::9090->9090/tcp   prometheus
[root@master ~]# 

刷新访问页面可以发现新的节点信息
在这里插入图片描述

5 使用Grafan对监控的节点信息进行可视化

Grafan 容器部署

//拉取grafan/grafan官方镜像
[root@master ~]# docker pull grafana/grafana
Using default tag: latest
latest: Pulling from grafana/grafana
97518928ae5f: Pull complete 
5b58818b7f48: Pull complete 
d9a64d9fd162: Pull complete 
4e368e1b924c: Pull complete 
867f7fdd92d9: Pull complete 
387c55415012: Pull complete 
07f94c8f51cd: Pull complete 
ce8cf00ff6aa: Pull complete 
e44858b5f948: Pull complete 
4000fdbdd2a3: Pull complete 
Digest: sha256:18d94ae734accd66bccf22daed7bdb20c6b99aa0f2c687eea3ce4275fe275062
Status: Downloaded newer image for grafana/grafana:latest
docker.io/grafana/grafana:latest

[root@master ~]# docker images|grep grafana/grafana
grafana/grafana                                                   latest     9b957e098315   2 weeks ago     275MB
[root@master ~]# 

//创建容器
[root@master ~]# docker run -itd --name grafan -p 3000:3000 grafana/grafana
7e69b53cda0f51e8d12c63e8860d5ebb9f8013c3f23f5194c19cf43ed792c7e2
[root@master ~]# docker ps | grep grafan
7e69b53cda0f   grafana/grafana                                     "/run.sh"                13 seconds ago      Up 12 seconds   0.0.0.0:3000->3000/tcp, :::3000->3000/tcp   grafan
[root@master ~]# 

在这里插入图片描述
在这里插入图片描述

添加prometheus 数据源(就是prometheus的访问地址)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


版权声明:本文为m0_56305656原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。